
Dimensionierung von Rohrleitungssystemen

gültig ab: 28. Juli 2025

NUSSBAUMRN

Gut installiert Bien installé Ben installato

Inhaltsverzeichnis

1	Einlei	tung	4
2	Geset	ze, Normen und Richtlinien	5
	2.1	SIA 385/1 und 385/2	. 5
	2.2	SVGW W3	. 5
	2.3	SVGW W4	. 5
	2.4	SIA 384/1 und SIA 384/2	. 5
	2.5	SVGW G1 Richtlinie für die Erdgasinstallation in Gebäuden (Gasleitsätze)	. 6
	2.6	Richtlinie EKAS 6517	. 6
	2.7	Leitfaden L1 Arbeitskreis LPG	. 6
3	Dime	nsionierung von Rohrleitungssystemen für Sanitäranlagen	. 7
	3.1	Grundlagen und Anforderungen	
		3.1.1 Begriffe, Definitionen, Einheiten	
		3.1.2 Systemanforderungen nach SIA 385/1	
		3.1.4 Druckbedingungen	. 8
		3.1.5 Spitzendurchfluss in I/s als Funktion des Summendurchflusses	
		3.1.7 Dimensionierungsgrundlage nach W3, Ausgabe 2013	
	3.2	Methoden der Rohrweitenbestimmung	. 16
		3.2.1 Betriebszustände, bei denen die vereinfachte Methode angewendet wird	
	2.2	3.2.2 Betriebszustände, bei denen die Berechnungsmethode angewendet wird	
	3.3	Rohrweitenbestimmung	
		3.3.2 Verteilbatterie	
		3.3.3 Vereinfachte Methode	
		3.3.4 Berechnungsmethode	. 36
4	Dime	nsionierung von Rohrleitungssystemen für Heizungsanlagen	55
	4.1	Grundlagen und Anforderungen	
		4.1.1 Begriffe, Definitionen, Einheiten	
		4.1.3 Empfohlene Fliessgeschwindigkeiten	
	4.2	Rohrweiten bestimmen	. 56
		4.2.1 Bruttowärmeleistung in Massenstrom umrechnen	. 56
	4.3	Umwälzpumpe bestimmen	
		4.3.1 Pumpenvolumenstrom berechnen	
	4.4	Druckverlusttabellen Optipress-Therm-Rohre aus Stahl verzinkt	
	1.7	4.4.1 Medium: Wasser 40 °C	
		4.4.2 Medium: Wasser 60 °C	. 64

NUSSBAUMRN

	4.5	Druckverlusttabellen Optipress 1.4520	. 70
		4.5.1 Medium: Wasser 7 °C	
		4.5.2 Medium: Wasser 40 °C	
		4.5.3 Medium: Wasser 60 °C	82
	4.6	Druckverlusttabellen Optiflex-Flowpress	. 88
		4.6.1 Medium: Wasser 7 °C	. 88
		4.6.2 Medium: Wasser 40 °C	
		4.6.3 Medium: Wasser 60 °C	96
	4.7	Zeta-Werte und äquivalente Rohrlängen von Optipress-Therm-Pressfittings und Armaturen	
5	Dime	nsionierung von Rohrleitungssystemen für Gas1	101
	5.1	Druckverlustdiagramm von Edelstahlrohren für Erdgas H	.101
	5.2	Druckverlustdiagramm von Edelstahlrohren für Flüssiggas	.102
6	Weite	erführende Informationen1	103

1 Einleitung

Neben den Rohrwerkstoffen und der Ausführung wird die Qualität des Trinkwassers massgeblich auch von der Bemessung der **Trinkwasserleitungen** beeinflusst. Die Ermittlung der Rohrdurchmesser der Verbrauchs- und Zirkulationsleitungen muss deswegen durch eine sorgfältige Dimensionierung auf der Grundlage aktueller technischer Regeln und Normen erfolgen.

In der Schweiz legt der SVGW die Regeln der Technik in den Bereichen Wasser- und Gasversorgung fest. Dabei gilt das SVGW-Regelwerk Wasser als Richtschnur für die Wasserversorgung für den Planer, Erbauer und Betreiber von Trinkwasserinstallationen.

Die Richtlinie **W3** richtet sich nach den früheren «Leitsätzen für die Erstellung von Trinkwasserinstallationen» und legt die Anforderungen an Trinkwasserinstallationen in Gebäuden fest. Auch dient sie den Versorgungsunternehmen als Massstab zur Beurteilung neu geplanter oder bestehender Installationen. Als Zulieferer in der Sanitärbranche nimmt die R. Nussbaum AG ihre Verantwortung wahr und sorgt dafür, dass alle Diagramme und Tabellen auf dem aktuellen W3 Standard zur Verfügung stehen.

Bei **Heizungsleitungen** steht ein sinnvoller Pumpendruck einem optimal dimensionierten Rohrnetz gegenüber. Es dürfen keine zu hohen Strömungsgeschwindigkeiten gewählt werden, damit im Betrieb keine Strömungsgeräusche entstehen und sowohl die Druckverluste in der Anlage als auch der Energiebedarf der Heizungspumpe niedrig gehalten werden. Investitionskosten und Betriebskosten müssen in ein ausgewogenes Verhältnis gesetzt werden. Hygienische Gesichtspunkte spielen bei einer Heizungsanlage keine Rolle.

Die Norm SIA 384 legt die Anforderungen an die Planung und Ausführung von Heizungsanlagen fest.

Gasleitungen sind wichtige Transportmittel bei der Versorgung mit Gas und unterliegen ebenfalls diversen Normen und Richtlinien. Die vielfältigen Aufgaben und Anforderungen von Gasinstallationen können hier allerdings nur im Überblick dargestellt werden. Das Dokument ersetzen keinesfalls die sorgfältige Lektüre der gesetzlichen Vorschriften und der technischen Regelwerke

Die Anforderungen für die Planung, Erstellung und Betrieb einer **Erdgasinstallation** werden in der Richtlinie G1 (Gasleitsätze) des SVGW festgelegt. Die Richtlinie dient zudem den Versorgungsunternehmen als Massstab zur Beurteilung einer neu geplanten oder einer bestehenden Installation.

Im Bereich **Flüssiggas** legen die Richtlinie EKAS 6517 sowie der Leitfaden L1 der Arbeitsgruppe LPG die Anforderungen für eine Anlage fest. Der Arbeitskreis LPG befasst sich mit der Sicherheit im Zusammenhang mit Flüssiggasanlagen. Die Fragestellungen umfassen Ausbildung, Planung, Installation, Kontrolle, Lagerung, Umschlag, Umgang und Verwendung von Flüssiggas für den beruflichen, betrieblichen und privaten Bereich. Oberstes Ziel des Vereins ist es sich dafür einzusetzen, dass Anlagen und Einrichtungen zur Lagerung oder Nutzung von Flüssiggas (Flüssiggasanlagen) sicher betrieben werden können.

2 Gesetze, Normen und Richtlinien

Alle Anlageteile müssen gemäss der Richtlinie für Trinkwasserinstallationen W3 respektive der Richtlinie für Erdgasinstallationen G1 des SVGW geplant, betrieben und instandgehalten werden.

2.1 SIA 385/1 und 385/2

Diese beiden Normen behandeln die Anlagen für Trinkwarmwasser in Gebäuden. SIA 385/1 enthält die Grundlagen und Anforderungen. Eine überarbeitete Fassung der Norm ist im November 2020 in Kraft getreten. SIA 385/2 beschreibt die Berechnungsmethoden für die Planung von Warmwasseranlagen. Die Normen begleiten die Planungsarbeiten und führen zu einer energieeffizienten, hygienisch einwandfreien Wassererwärmung, Warmwasserspeicherung und -verteilung.

2 SVGW W3

Die Richtlinie SVGW W3 beschreibt die Anforderungen an Trinkwasserinstallationen von der Hausanschlussleitung intern (ab Innenkante Gebäudeeinführung bzw. Wasserzähler) bis zu den Entnahmestellen und den angeschlossenen Apparaten.

Zusätzlich gibt es 4 Ergänzungen:

SVGW-Richtlinie W3/E1

Die Ergänzung 1 «Rückflussverhinderung in Sanitäranlagen» beschreibt die Sicherungsmassnahmen zum Schutz vor dem Rückfliessen von Nichttrinkwasser aus Hausinstallationen in das Trinkwasserversorgungsnetz, damit die Trinkwasserqualität jederzeit eingehalten werden kann.

SVGW-Richtlinie W3/E2

Die Ergänzung 2 «Betrieb und Unterhalt von Sanitäranlagen» legt die Anforderungen fest für den Betrieb und Unterhalt von Sanitäranlagen in Gebäuden.

SVGW-Richtlinie W3/E3

Die Ergänzung 3 «Hygiene in Trinkwasserinstallationen» beschreibt Massnahmen zur Sicherstellung der gesetzlich vorgeschriebenen guten Verfahrenspraxis, insbesondere zur Einhaltung der guten Hygienepraxis sowie der guten Herstellungspraxis, damit in der Trinkwasserinstallation kalt und warm die einwandfreie Trinkwasserqualität sichergestellt werden kann. Am 1. September 2020 wurde die Erstausgabe von 2018 durch eine neue Version abgelöst, die noch detailliertere Massnahmen und Anforderungen für alle Phasen im Lebenszyklus einer Trinkwasserinstallation – von der Planung bis hin zum Betrieb – enthält. Alle Bauwerke mit einer Baubewilligung ab diesem Datum müssen nach der neuen Richtlinie ausgeführt werden. Zukünftige Sanierungen sind ebenfalls nach dieser Richtlinie zu planen. Die Vorschriften zur Druckprüfung sowie zur Erstbefüllung und Spülung sind in der neuen Version der Richtlinie unverändert.

SVGW-Richtlinie W3/E4

Die Ergänzung 4 «Risikobasierte Selbstkontrolle in Gebäude-Trinkwasserinstallationen» ist am 1. März 2021 in Kraft getreten. Sie enthält detaillierte Vorgaben für die Qualitätssicherung durch den Eigentümer/Betreiber.

2.3 SVGW W4

Die Richtlinie SVGW W4 beschreibt die Anforderungen an Planung, Projektierung sowie Bau, Betrieb und Unterhalt von Trinkwasserversorgungssystemen ausserhalb von Gebäuden.

2.4 SIA 384/1 und SIA 384/2

Diese beiden Normen behandeln die Heizungsanlagen in Gebäuden. Die Norm SIA 384/1 (2009) ersetzt die Empfehlung SIA 384/1 (1991) Zentralheizungen. Im Gegensatz zur früheren Empfehlung beruht die neue Norm 384/1 auf einer entsprechenden europäischen Norm.

Die Norm SIA 384/1 legt die Anforderungen an die Planung und Ausführung von Heizungsanlagen fest.

Die Norm SIA 384/2 legt Verfahren zur Berechnung der statischen Norm-Heizlast für Standardfälle unter Auslegebedingungen fest.

2.5 SVGW G1 Richtlinie für die Erdgasinstallation in Gebäuden (Gasleitsätze)

Die Richtlinie SVGW G1 gilt für die Planung, Errichtung, Änderung, den Betrieb und die Instandhaltung einer Erdgasinstallation. Sie beschreibt die Anforderungen an Erdgasinstallationen nach der Hauptabsperrarmatur bzw. von der Hausinnenwand bis zum Apparateanschluss. Weiter legt sie die Anforderungen an den Aufstellungsort eines Gasapparats, an den Brandschutz sowie die Abgasanlage fest.

2.6 Richtlinie EKAS 6517

Diese Richtlinie gilt für Anlagen und Einrichtungen zur Lagerung oder Nutzung von Flüssiggas (Flüssiggasanlagen) im industriellen, gewerblichen und betrieblichen Bereich sowie sinngemäss als Stand der Technik für den privaten Bereich. Sie umfasst Planung, Installation, Ausrüstung, Betrieb, Umgang, Kontrolle und Instandhaltung der Flüssiggasanlagen sowie Vorgaben zur fachlichen Qualifikation von Installateuren, Kontrolleuren und Personal.

2.7 Leitfaden L1 Arbeitskreis LPG

Der Leitfaden L1 gilt für Planung, Bau, Änderung/Erweiterung, Betrieb sowie Instandhaltung und Kontrolle einer Flüssiggasanlage. Sie beschreibt die Anforderungen an Flüssiggasinstallationen vom Flüssiggasbehälter bis zum Apparateanschluss. Weiter legt sie die Anforderungen an den Aufstellungsort eines Gasapparats, den Brandschutz sowie die Abgasanlage fest. Der Leitfaden fasst die wichtigsten Vorschriften und Regelwerke zusammen, zeigt praktische Lösungsmöglichkeiten auf, mit denen die Sicherheitsschutzziele erreicht werden können und definiert die Regeln der Technik.

3 Dimensionierung von Rohrleitungssystemen für Sanitäranlagen

3.1 Grundlagen und Anforderungen

3.1.1 Begriffe, Definitionen, Einheiten

Begriff	Symbol	Definition	Einheit
Durchfluss/Volumen-	Ÿ	Volumen des Mediums das pro Zeiteinheit durch einen festgelegten	l/s
strom		Querschnitt transportiert wird	m³/h
Entnahmearmaturen- durchfluss	Q_A	Berechnungsdurchfluss für eine geöffnete Entnahmeeinrichtung	l/s
Summendurchfluss	Q_T	Summe aller Entnahmearmaturendurchflüsse	l/s
Spitzendurchfluss	Q_{D}	Für die hydraulische Berechnung massgebender Durchfluss, unter Berücksichtigung der während des Betriebs auftretenden wahrscheinlichen Gleichzeitigkeit der Wasserentnahme	l/s
Druckdifferenz, Druck- verlust	Δρ	Druckunterschied zwischen 2 Punkten in der Trinkwasserinstallation, hervorgerufen durch Rohrreibung und Einzelwiderstände	Pa
Druckverlustbeiwert, Zeta-Wert	ζ	Verhältniszahl zwischen hydrostatischer Druckdifferenz und hydrodynamischem Druck (dimensionslose Grösse)	-
Äquivalente (gleich- wertige) Rohrlänge	l'	Verhältnis zwischen der Druckdifferenz eines Formstücks oder einer Armatur und der Druckdifferenz von 1 m geradem Rohr	m
Belastungswert	LU	Bezeichnet den am Anschlusspunkt vor der Entnahmestelle zur Verfü-	1
(Loading unit)		gung gestellten Durchfluss in Abhängigkeit vom Verwendungszweck und der Benutzungsdauer. Ein Belastungswert entspricht einem Entnahmearmaturendurchfluss von 0.1 l/s.	

3.1.2 Systemanforderungen nach SIA 385/1

Hauptanforderungen bei der Planung für Warmwasserinstallationen:

- Die Warmwasserversorgung muss so ausgelegt sein, dass folgende Temperaturen erreicht werden:
 - ≥ +60 °C am Ausgang des Warmwasserspeichers
 - ≥ +55 °C in den warm gehaltenen Leitungen
 - +50 °C an den Entnahmestellen (auch bei Wärmepumpen und Sonnenkollektoren)
- Diese Anforderungen gelten nicht für Durchflusswassererwärmer, wenn das Warmwasser nicht länger als 24 h in einem Zirkulationssystem bei 25 bis 50 °C verbleibt.
- Das Speichervolumen des Warmwassers muss knapp ausgelegt werden.
- Kaltwasserleitungen sind so zu installieren, dass eine Erwärmung durch parallel laufende Warmwasser- oder Heizungsleitungen vermieden wird und sie nicht über 25 °C erwärmt werden können. Optimal ist eine Kaltwassertemperatur ≤ 20 °C.

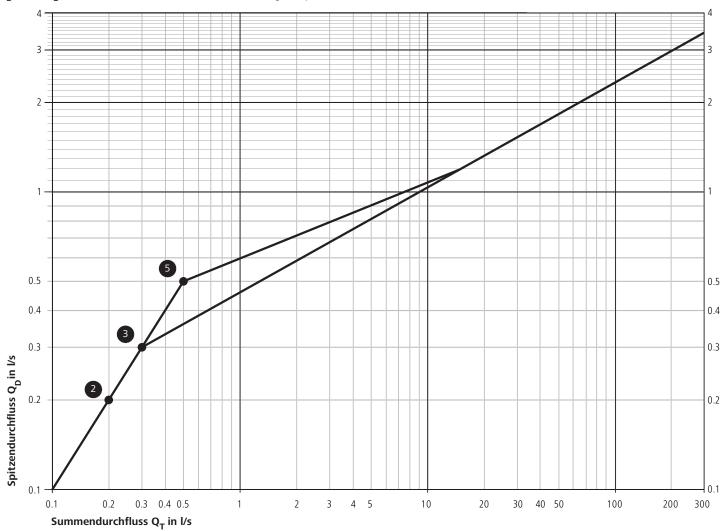
3.1.3 Fliessgeschwindigkeiten

Leitung	Fliessgeschwindigkeit
Ausstossleitungen	max. 4.0 m/s
(Einzelzapfstellensystem)	
Apparategruppe/Stockwerkverteilung	max. 3.0 m/s
(Ab Absperrventil auf der Etage, T-Stück-Installation)	
Verteilleitungen	max. 2.0 m/s
(Kellerverteilung/Steigzone)	
Hausanschlussleitung	max. 2.0 m/s
Hausanschlussleitung mit Brandschutzeinrichtung	max. 2.0 m/s

Tab. 1: Zulässige (rechnerische) Fliessgeschwindigkeiten im Rohr nach SVGW W3:2013 2.1.3

3.1.4 Druckbedingungen

Ruhedruck an der Entnahmestelle	max. 500 kPa (5.0 bar)
Ruhedruck bei Garten- und Garagenentnahmestellen sowie Bewässerungsanlagen	max. 1000 kPa (10 bar)
Mindestfliessdruck an der Entnahmestelle	min. 100 kPa (1.0 bar)


Tab. 2: Druckbedingungen in Trinkwasseranlagen nach SVGW W3:2013 2.1.4

In der Regel ist eine hausinterne Druckerhöhungsanlage notwendig, wenn der minimale Fliessdruck von 100 kPa (1 bar) nicht an jeder Entnahmestelle gewährleistet werden kann.

3.1.5 Spitzendurchfluss in l/s als Funktion des Summendurchflusses

Diagramm 1 (Gleichzeitigkeit)

Funktionsgleichung Summendurchfluss 0.3 l/s bis 300 l/s: $Q_D = Q_T^{0.353} \times 0.459$ Funktionsgleichung Summendurchfluss 0.3 l/s bis 15 l/s: $Q_D = Q_T^{0.257} \times 0.598$

Grösster angeschlossener Einzelanschluss einer Armatur oder eines Apparates

3.1.6 Ausstosszeiten und Druckverlust

Die Ausstosszeit ist die Zeitspanne, die vergeht, bis die Nutztemperatur (40 °C) an der Entnahmestelle erreicht ist. Geringe Ausstosszeiten entsprechen dem Komfortanspruch des Verbrauchers und sind im Interesse eines sparsamen Energieverbrauchs.

Folgende Parameter beeinflussen die Ausstosszeit:

- Die Verlegetechnik der Warmwasserverteilung
- Die Anordnung der Sanitärapparate
- · Die Rohrdimension und Leitungslänge
- Die Temperatur des Warmwassers
- Der Volumenstrom

Sanitärapparat	Ausstosszeit ohne Warmhaltung	Ausstosszeit mit Warmhaltung
Waschtisch, Handwaschbecken,	15 s	10 s
Bidet, Duschanlage, Badewanne		

Ausstosszeiten in Sekunden gemäss SIA 385/2 unter Berücksichtigung des Druckverlusts in kPa nach W3 für Optiflex-Rohre:

Belastungswerte LU									,	1			
Volumenstrom V					[l/s]	0.1							
Warmwasser					[°C]				5	5			
Kinematische Viskosität v					[m²/s]				5.12	2*10 ⁻⁷			
Rohrdimension					[mm]	1	6	1	6	2	0	2	:5
Nennweite DN						1	0	1	2	1	5	2	:0
Rohrinnenmass					[mm]	8	.4	11	.6	14	1.4	19	9.6
Max. Fliessgeschwindigkeit					[m/s]	1.	80	0.9	462	0.	61	0.	33
Volumen pro Meter Rohr V					[l/m]	0.0	554	0.1	057	0.1	629	0.3	017
L _{max} : SIA 385/2 + W3						SIA	W3	SIA	W3	SIA	W3	SIA	W3
	Ø 16 x 3.8	Ø 16 x 2.2	Ø 20 x 2.8	Ø 25 x 2.7	[m]	[s]	[kPa]	[s]	[kPa]	[s]	[kPa]	[s]	[kPa]
		4 m		1 m	1	1.11	4.6	2.11	1.0	3.26	0.4	6.03	0.1
			3 m		2	2.22	9.2	4.23	2.0	6.51	0.7	12.07	0.2
					3	3.33	13.8	6.34	3.0	9.77	1.1	18.10	0.2
					4	4.43	18.4	8.45	4.0	13.03	1.4	24.14	0.3
	9 m				5	5.54	23.0	10.57	5.0	16.29	1.8	30.17	0.4
Rohrlänge in m					6	6.65	27.6	12.68	6.0	19.54	2.1	36.21	0.5
					7	7.76	32.3	14.80	7.0	22.80	2.5	42.24	0.6
					8	8.87	36.9	16.91	8.0	26.06	2.8	48.27	0.7
					9	9.98	41.5	19.02	9.0	29.31	3.2	54.31	0.7
					10	11.08	46.1	21.14	9.9	32.57	3.6	60.34	0.8
					11	12.19	50.7	23.25	10.9	35.83	3.9	66.38	0.9
					12	13.30	55.3	25.36	11.9	39.09			1.0

Ausstosszeit mit Warmhaltung
Ausstosszeit ohne Warmhaltung
Ausstosszeit > 15 s
Druckverlust pro Meter Rohr (< 100 kPa)
Druckverlust pro Meter Rohr (> 100 kPa)

Belastungswerte LU								- :	2				
Volumenstrom v [l/s]					[l/s]	0.2							
Warmwasser					[°C]					5			
Kinematische Viskosität v					[m²/s]				5.12	2*10 ⁻⁷			
Rohrdimension					[mm]	1	6	1	6	2	0	2	5
Nennweite DN						1	0	1	2	1	5	2	0
Rohrinnenmass					[mm]	8	.4	11	.6	14	.4	19	9.6
Max. Fliessgeschwindigkeit					[m/s]	3.	61	1.	89	1.	23	0.	66
Volumen pro Meter Rohr V					[l/m]	0.0	554	0.1	057	0.1	629	0.3	017
L _{max} : SIA 385/2 + W3						SIA	W3	SIA	W3	SIA	W3	SIA	W3
	Ø 16 x 3.8	Ø 16 x 2.2	Ø 20 x 2.8	Ø 25 x 2.7	[m]	[s]	[kPa]	[s]	[kPa]	[s]	[kPa]	[s]	[kPa]
					1	0.55	15.5	1.06	3.3	1.63	1.2	3.02	0.3
		9 m	6 m	3 m	2	1.11	31.0	2.11	6.7	3.26	2.4	6.03	0.6
	6 m				3	1.66	46.5	3.17	10.0	4.89	3.6	9.05	0.8
	O III				4	2.22	62.0	4.23	13.4	6.51	4.8	12.07	1.1
					5	2.77	77.5	5.28	16.7	8.14	6.0	15.09	1.4
Rohrlänge in m					6	3.33	93.0	6.34	20.1	9.77	7.2	18.10	1.7
Komlange III III					7	3.88	108.5	7.40	23.4	11.40	8.4	21.12	1.9
					8	4.43	124.0	8.45	26.8	13.03	9.6	24.14	2.2
					9	4.99	139.5	9.51	30.1	14.66	10.8	27.15	2.5
					10	5.54	155.0	10.57	33.5	16.29	12.0	30.17	2.8
					11	6.10	170.5	11.63	36.8	17.91	13.2	33.19	3.0
					12	6.65	186.0	12.68	40.1	19.54	14.4	36.21	3.3

Ausstosszeit mit Warmhaltung
Ausstosszeit ohne Warmhaltung
Ausstosszeit > 15 s
Druckverlust pro Meter Rohr (< 100 kPa)
Druckverlust pro Meter Rohr (> 100 kPa)

Belastungswerte LU									- 3	3				
Volumenstrom v					[l/s]	0.3								
Warmwasser					[°C]					5				
Kinematische Viskosität v					[m²/s]				5.12	2*10 ⁻⁷				
Rohrdimension					[mm]	1	6	1	6	2	20	2	!5	
Nennweite DN						1	0	1	2	1	5	2	20	
Rohrinnenmass					[mm]	8	.4	11	.6	14	1.4	19	9.6	
Max. Fliessgeschwindigkeit					[m/s]	5.	41	2.	84	1.	84	0.	99	
Volumen pro Meter Rohr V					[l/m]	0.0	554	0.1	057	0.1	629	0.3	0.3017	
L _{max} : SIA 385/2 + W3	Ø 16 x 3.8	Ø 16 x 2.2	Ø 20 x 2.8	Ø 25 x 2.7	[m]	SIA [s]	W3 [kPa]	SIA [s]	W3 [kPa]	SIA [s]	W3 [kPa]	SIA [s]	W3 [kPa]	
					1	0.37	31.5	0.70	6.8	1.09	2.4	2.01	0.6	
	3 m			4 m	2	0.74	63.0	1.41	13.6	2.17	4.9	4.02	1.1	
				4 111	3	1.11	94.5	2.11	20.4	3.26	7.3	6.03	1.7	
					4	1.48	126.1	2.82	27.2	4.34	9.7	8.05	2.3	
			9 m		5	1.85	157.6	3.52	34.0	5.43	12.2	10.06	2.8	
Rohrlänge in m		12 m			6	2.22	189.1	4.23	40.8	6.51	14.6	12.07	3.4	
Normange in in		12 111			7	2.59	220.6	4.93	47.6	7.60	17.0	14.08	3.9	
					8	2.96	252.1	5.64	54.4	8.69	19.5	16.09	4.5	
				ļ	9	3.33	283.6	6.34	61.2	9.77	21.9	18.10	5.1	
					10	3.69	315.1	7.05	68.0	10.86	24.4	20.11	5.6	
					11	4.06	346.6	7.75	74.8	11.94	26.8	22.13	6.2	
					12	4.43	378.2	8.45	81.6	13.03	29.2	24.14	6.8	

Ausstosszeit mit Warmhaltung
Ausstosszeit ohne Warmhaltung
Ausstosszeit > 15 s
Druckverlust pro Meter Rohr (< 100 kPa)
Druckverlust pro Meter Rohr (> 100 kPa)

3.1.6.1 Temperaturverlauf an einer Warmwasser-Entnahmestelle

Das folgende Diagramm zeigt den Verlauf der Warmwassertemperatur am Austritt einer Warmwasser-Entnahmestelle.

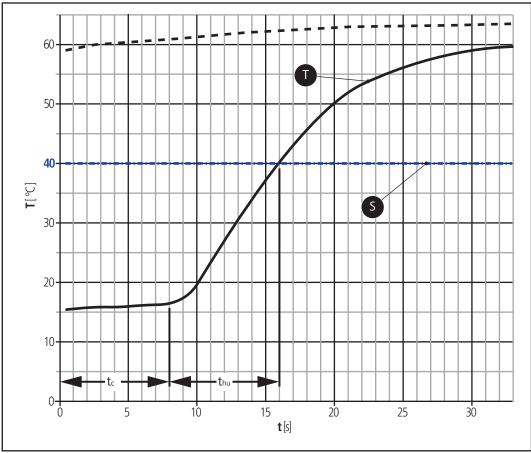


Abb. 1: Temperaturverlauf an einer Warmwasser-Entnahmestelle

t_c = Kaltphase: Die Wassertemperatur an der Entnahmestelle liegt in der Nähe der Umgebungstemperatur.

t_{hu} = Anwärmphase: Die Wassertemperatur an der Entnahmestelle steigt bis 40 °C.

= Temperaturverlauf: Gemessene Temperatur an der Entnahmestelle für Optiflex-Rohre

S = Eigentliche Wasserentnahme: Nach der Ausstosszeit, d. h. nach Erreichen von 40 °C an der Entnahmestelle

3.1.6.2 Berechnung der Ausstosszeit

Für grössere Rohre und andere Rohrlängen lässt sich die Ausstosszeit folgendermassen berechnen:

$$\Delta t = \frac{V \cdot L}{\dot{V}} \cdot 2$$

Δt = Ausstosszeiten [s]

V = Volumen pro Meter Rohr [l/m]

L = Rohrlänge [m]

y = Volumenstrom [l/s]

2 = Faktor wegen Anwärmphase

3.1.7 Dimensionierungsgrundlage nach W3, Ausgabe 2013

Durch unterschiedliche Fittingkonstruktionen treten in Trinkwasserverteilsystemen unterschiedliche Druckverluste auf. Bei der Rohrweitenbestimmung nach W3 2013 müssen die korrekten Zeta-Werte der eingesetzten Komponenten berücksichtigt werden.

Der **Zeta-Wert** (ζ), oder Druckverlustbeiwert eines Fittings ist eine dimensionslose Gösse für den zu erwartenden Druckverlust in einem durchströmten Formteil. Er gibt Auskunft über die Grösse des Strömungswiderstandes eines Fittings und wird empirisch ermittelt.

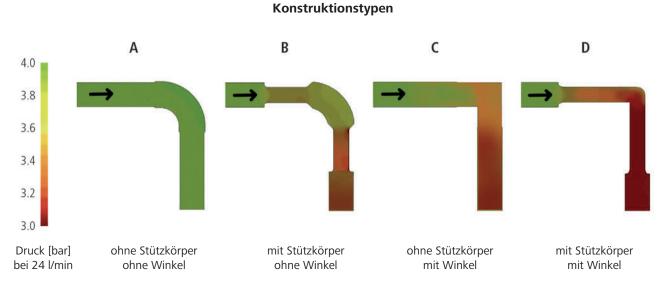


Abb. 2: Druckverluste in unterschiedlichen Fittingkonstruktionen in Trinkwasserverteilsystemen

Die durch Einzelwiderstände verursachten Druckverluste haben Einfluss auf die Dimensionierung der Leitungsnetze. Strömungsgünstige Bauteile ermöglichen kleinere Dimensionen und tragen zu einer wirtschaftlichen und hygienischen Installation bei.

Der Kv-Wert ist eine weitere Grösse, die für die Dimensionierung von Armaturen ausschlaggebend ist.

Der Kv-Wert wird auch als Durchflussfaktor oder als Durchflusskoeffizient bezeichnet. Er ist ein Mass für den Durchsatz einer Flüssigkeit oder eines Gases durch ein Ventil und dient zur Auswahl und Dimensionierung von Ventilen. Der Kv-Wert entspricht dem Wasserdurchfluss durch ein Ventil (in m³/h), bei einer Druckdifferenz von 1 bar und einer Wassertemperatur von 5 bis 30 °C. Ein Kv-Wert gilt nur für den zugehörigen Hub (Öffnungsgrad) eines Ventils (K_v). Bei Nennhub (100 % Öffnungsgrad) wird der Kv-Wert als **Kvs** bezeichnet. Anhand des Kvs-Wertes kann bei einem Ventil der maximal mögliche Durchsatz ermittelt werden. Bei der Auslegung eines Ventils sollte auf den Kvs-Wert eine Auslegungsreserve von 20 bis 30% berücksichtigt werden.

Bei Flüssigkeiten kann der Kv-Wert in Abhängigkeit des Volumenstroms, der Dichte und des Druckverlusts berechnet werden.

Für die Ausgangswerte 1 bar und der Dichte des Wassers von 1000 kg/m³ bei 20 °C kann der Kv-Wert eines Ventils wie folgt dargestellt werden:

$$K_v = Q \cdot \sqrt{\frac{\rho}{\Delta p \cdot 1000}}$$

Q = Durchflussvolumenstrom [m³/h]

 Δp = Druckverlust [bar]

 \mathbf{K}_{v} = Kv-Wert des Ventils [m³/h] $\mathbf{\rho}$ = Dichte des Mediums [kg/m³]

Unter Berücksichtigung des Kvs-Werts kann der Druckverlust für den zu erwartenden Volumenstrom wie folgt berechnet werden:

$$\Delta p_2 = \frac{\Delta p_1 \cdot \dot{V}_2^2}{\dot{V}_1^2}$$

 $\Delta p_1 = 1000 \text{ mbar} = 1 \text{ bar (laut Definition Kvs-Wert)}$

 V_{\perp} = Ausgangsvolumenstrom [m³/h]

 V_2 = Zu erwartender Volumenstrom [m³/h]

 $\Delta p_2 = Druckverlust bei V_2 [bar]$

Zwischen Kv und Zeta-Wert besteht folgender Zusammenhang:

$$\zeta = \frac{d^4}{625.439 \cdot K_v^2}$$

Näherungswert:

$$\zeta = \left(\frac{0.05 \, \bullet \, A}{K_{_{\boldsymbol{V}}}}\right)^{\! 2}$$

ζ = Zeta-Wert

d = Strömungsdurchmesser [mm]
 K_v = Kv-Wert des Ventils [m³/h]
 625.439 = Proportionalitätsfaktor

A = Strömungsquerschnitt [mm²]

3.1.7.1 Umrechnung in äquivalente Rohrlänge

Die äquivalente Rohrlänge eines Formstücks kann durch das Verhältnis zwischen dem Zeta-Wert des Formstücks und dem Zeta-Wert eines 1 m langen, geraden Rohres berechnet werden:

Äquivalente Rohrlänge I' [m] = Zeta-Wert Formstück / Zeta-Wert 1 m Rohr

3.1.7.2 Druckdispositiv

Zur Unterstützung der Berechnung des Betriebsdrucks und des Druckverlusts eines Objekts stellt Nussbaum ein Formular zur Verfügung.

Das Formular «Druckdispositiv» kann auf www.nussbaum.ch/planungstools heruntergeladen werden

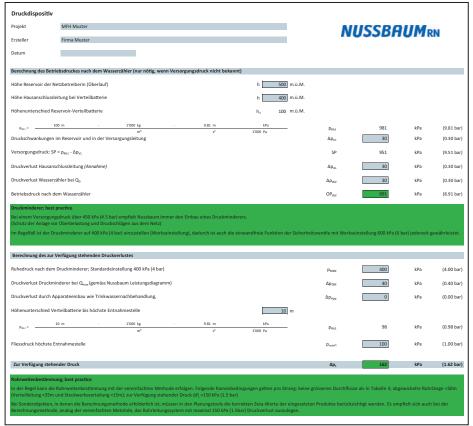


Abb. 3: Formular Druckdispositiv

Bei einem Versorgungsdruck über 450 kPa (4.5 bar) empfiehlt Nussbaum immer den Einbau eines **Druckminderers** zum Schutz der Anlage vor Überbelastung und Druckschlägen aus dem Netz. Im Regelfall ist der Druckminderer auf 400 kPa (4 bar) einzustellen (Werkseinstellung), dadurch ist auch die einwandfreie Funktion der Sicherheitsventile mit Werkseinstellung 600 kPa (6 bar) jederzeit gewährleistet.

3.2 Methoden der Rohrweitenbestimmung

Ziel der Rohrweitenbestimmung ist es, den Benutzer mit hygienisch einwandfreiem Trinkwasser in ausreichender Menge und unter optimalen Druckbedingungen zu versorgen.

Dabei sind Gegebenheiten wie Gebäudestandort, hygienische, energetische und akustische Anforderungen, unterschiedliche Verlegetechniken usw. zu berücksichtigen.

Es wird zwischen 2 Methoden der Rohrweitenbestimmung unterschieden:

- Die vereinfachte Methode
- · Die Berechnungsmethode

3.2.1 Betriebszustände, bei denen die vereinfachte Methode angewendet wird

Die vereinfachte Methode darf nur für so genannte «Normalinstallationen» angewendet werden. Alle anderen Objekte gelten als «Spezialinstallationen» und müssen nach dem differenzierten Berechnungsweg dimensioniert werden.

Rund 80 % der Wohnbauobjekte erfüllen die Bedingungen für eine Normalinstallation.

Die vereinfachte Methode kann unter folgenden Voraussetzungen angewendet werden:

- Der LU-Wert an einer einzelnen Entnahmestelle darf nicht höher als 5 sein (siehe nachfolgende Tabelle).
- Der maximale Spitzendurchfluss darf unter Berücksichtigung der Gleichzeitigkeit gemäss Diagramm 1 nicht überschritten werden.
- Die Summe aller LUs pro Strang muss kleiner als 150 sein.
- Die maximale abgewickelte Leitungslänge pro Strang muss kürzer als 50 m sein, wobei die maximale Leitungslänge in der Stockwerkverteilung 15 m und die Verteilleitung 35 m nicht überschreiten darf.
- Für die gesamte Leitungsinstallation steht gemäss Druckdispositiv ein Druckverlust von mindestens 150 kPa (1.5 bar) zur Verfügung.

3.2.2 Betriebszustände, bei denen die Berechnungsmethode angewendet wird

Gebäude mit überdurchschnittlichem Ausmass gelten als «Spezialinstallationen» und müssen nach dem differenzierten Berechnungsweg dimensioniert werden.

Die Berechnungsmethode gilt für folgende Betriebszustände:

- Installationen, die die Bedingungen für die vereinfachte Methode nicht erfüllen.
- Gebäude mit abgewickelter Leitungslänge > 50 m.
- Betriebszustände die eine der folgenden Bedingungen erfüllen:
 - Höhere Gleichzeitigkeit: Die gleichzeitige Benutzung der angeschlossenen Entnahmestellen liegt über dem maximalen Spitzendurchfluss gemäss Diagramm 1 und es gibt Spitzenbetriebszeiten, z. B. bei Sportanlagen (Duschen), Hotels, Gewerbe- und Industriebetrieben.
 - Dauerentnahme: Entnahmestellen die l\u00e4nger als 15 Minuten ge\u00f6ffnet bleiben, z. B. K\u00fchlwasseranschl\u00fcsse, Brunnen, Garten-Bew\u00e4sserungsanlagen oder Bassinf\u00fcllungen.
 - Spitzenentnahme: Grössere Durchflüsse oder Anschlüsse als in der Tabelle «Belastungswert (LU)» aufgeführt sind, d. h. Durchflüsse > 0.5 l/s oder Anschlüsse ³/₄". z. B. Schwallbrausen, gewerbliche Geschirrspüler u. a.
 - Kombinierte Betriebszustände: Die Rohrweitenbestimmung erfolgt sowohl mit der vereinfachten als auch mit der Berechnungsmethode.

3.3 Rohrweitenbestimmung

3.3.1 Hausanschlussleitung

Die Rohrweite wird in der Regel gemäss der Tabelle 5 aus W3 oder der maximal zulässigen Fliessgeschwindigkeit und dem Druckverlust durch die Netzbetreiber bestimmt. Der Druckverlust von der Versorgungsleitung bis zum Wasserzähler sollte unter Berücksichtigung der äquivalenten Rohrlängen für Formstücke und Armaturen 40 kPa (0.4 bar) nicht überschreiten.

Der für die Tabelle zu Grunde gelegte maximale Druckverlust entspricht einer Fliessgeschwindigkeit von max. 2.0 m/s. Die Werte der Rohrlängen in der Tabelle stellen einen Mittelwert für alle Werkstoffe dar.

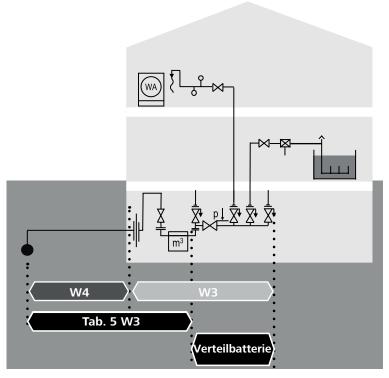


Abb. 4: Schema Hausanschlussleitung

Richtwerttabelle materialunabhängig											
Max. abgewickelte Länge [m]	10	20	30	40	50						
Belastungswert (LU)	DN	DN	DN	DN	DN						
60	25	32	32	32	40						
90	25	32	32	40	40						
120	32	32	32	40	40						
150	32	32	40	40	40						
300	32	40	40	40	50						
600	40	40	50	50	50						

Tab. 3: Belastungswerttabelle, Tabelle 5 W3

3.3.2 Verteilbatterie

Belastungswert (LU)	\mathbf{Q}_{D}	\mathbf{Q}_{D}	DN
	[l/s]	[l/min]	
25	0.76	45	25
60	0.95	57	32
90	1.05	63	32
120	1.13	68	32
150	1.20	72	40
300	1.52	91	40
600	1.95	117	50
1500	2.69	161	50
3000	3.44	206	65
_	5.00	300	65
_	6.67	400	80
_	8.33	500	80
_	10.00	600	80
- 11.67		700	100
— 13.33		800	100
_	15.00	900	100

Tab. 4: Spitzendurchfluss, Tabelle Nussbaum

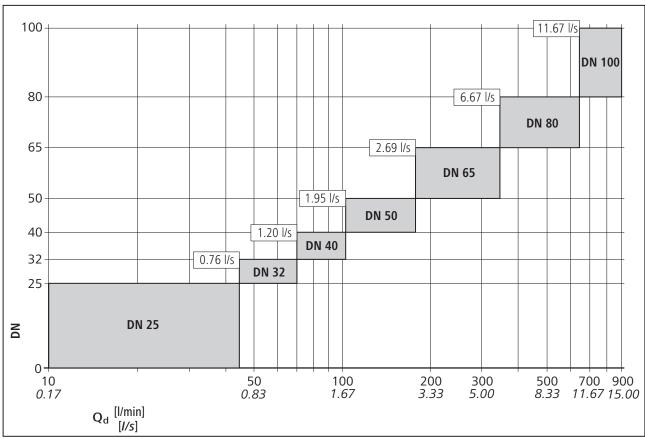


Abb. 5: Diagramm Nussbaum

3.3.3 Vereinfachte Methode

3.3.3.1 Neue Belastungswerte

Mit dem neuen W3-Regelwerk sind den Verbrauchern neue Belastungswerte (LU) zugeordnet worden. LU (Loading unit) ist der Wert, der den Mindestentnahmearmaturendurchfluss, die Benutzdauer und die Häufigkeit der Benutzung berücksichtigt.

Verwendungszweck: Anschlüsse DN 15 (1/2")	Q _A [l/s]	Q _A [l/s]	LU	LU
	kalt	warm	kalt	warm
WC-Spülkasten, Getränkeautomat	0.1	-	1	-
Waschtisch, Waschrinne, Bidet, Coiffeurbrause	0.1	0.1	1	1
Haushaltsgeschirrspülmaschine	0.1	-	1	_
Haushaltswaschautomat	0.2	-	2	_
Entnahmearmatur für Balkon*	0.2	-	2	-
Dusche, Spülbecken, Waschtrog, Ausgussbecken, Stand- und Wandausguss	0.2	0.2	2	2
Urinalspülung automatisch	0.3	-	3	-
Badewanne	0.3	0.3	3	3
Entnahmearmatur für Garten und Garage	0.5	-	5	-
* Frostsichere Cartenventile mit Durchfluschlande: 40060, 40070, 40	200 40210			

^{*} Frostsichere Gartenventile mit Durchflussblende: 40060, 40070, 40200, 40210 (Einsätze: 40064, 40074, 40204, 40214)

Tab. 5: Belastungswert (LU)

- Heizungsfüllventile sind bei der Rohrweitenbestimmung nicht zu berücksichtigen.
- Verbraucher mit Anschlüssen > 1/2" und/oder speziellen Durchflussleistungen sind immer gemäss Herstellerangabe nach Druckverlust zu berechnen.

3.3.3.2 Rohrweitenbestimmung Warmwasserverteilung Optipress

Um die Rohrweitenbestimmung von Verteilleitungen zu zeigen, wird ein Beispiel Schritt für Schritt bis zur fertigen Rohrweitenbestimmung durchgeführt. Die isometrische Darstellung zeigt den Aufbau des Beispiels. Es wird die Rohrweitenbestimmung des Warmwassersystems erstellt.

Bevor mit der Rohrweitenbestimmung begonnen werden kann, müssen den Verbrauchern die Belastungswerte zugeteilt werden. Auskünfte über die Belastungswerte sind im Kapitel «Neue Belastungswerte» in der Tabelle «Belastungswert (LU)» zu finden, « «Neue Belastungswerte», Seite 19.

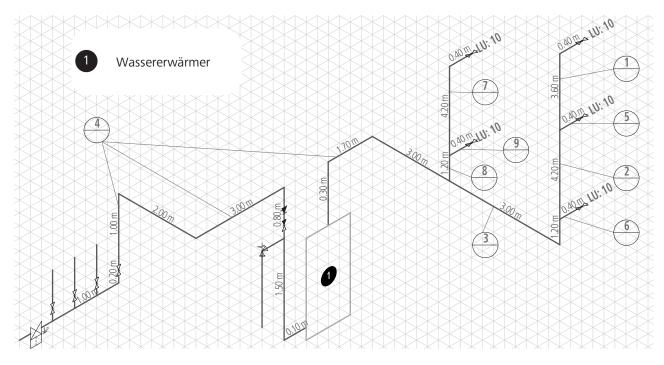


Abb. 6: Isometrie der WW-Verteilung Optipress

Die Teilstrecken sind für die Rohrweitenbestimmung von 1 bis 9 durchnummeriert. Als Produktlinie wird Optipress-Aquaplus gewählt.

Nr.	Material	Bemerkung	Länge [m]	Belastungswert (LU)	Dimension
1	Optipress 1.4521	1			
2	Optipress 1.4521	1			
3	Optipress 1.4521	→			
4	Optipress 1.4521	-			
5	Optipress 1.4521	1			
6	Optipress 1.4521	1			
7	Optipress 1.4521	1			
8	Optipress 1.4521	1			
9	Optipress 1.4521	1			

→ Kellerverteilung

↑ Steigzone

Um die **Teilstrecke 1** zu dimensionieren, benötigt man den daran angeschlossenen LU-Wert (10 LU) und die Distanz bis zum Wasserzähler, resp. bis zum zentralen Druckminderer. Für diese Distanz addiert man die Teilstrecken (ΔS) 1 bis 4.

 Δ S1 + Δ S2 + Δ S3 + Δ S4* = 27.0 m

* Inkl. Verteilerstamm

Länge = 27 mLU = 10

Die Rohrweite kann aus der untenstehenden Tabelle entnommen werden. 27 m gehören in den Geltungsbereich bis max. 35 m.

Belastungswert-Tabelle	Optipress – rost	tbeständige Stahl	rohre			
Verteilsystem:	Installation mit	T-Stücken (Richti	ungsänderung mi	it Formstücken)	53	
Hersteller:	R. Nussbaum A	G, Olten				
SVGW Zertifikat Nr.:	0209-4548					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	$d_a \times s$	da × s	$d_a \times s$	da×s	d _a × s	
1	15 × 1	15 × 1	15 × 1	15 × 1	15 ×1	
2	15 × 1	15 × 1	15 × 1	18 × 1	18 ×1	
3	18 × 1	18 × 1	18 × 1	18 × 1	22 × 1.2	s/I
4	18 × 1	18 × 1	18 × 1	22 × 1.2	22 × 1.2	Verteilleitung Geschwindigkeit max. 2 m/s
6	18 × 1	18 × 1	22 × 1.2	22 × 1.2	22 × 1.2	д јах.
8	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	itun it m
10	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	Verteilleitung windigkeit ma
15	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	/ert /indi
20	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	28 × 1.2	chw
30	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	Ges
40	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	
50	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
70	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
90	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	35 × 1.5	
120	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
150	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
Doby d s [mama]	151	101	22 1 2	2012	251.5	
Rohr da × s [mm]	15 × 1	18 × 1	22 × 1.2	28 × 1.2	35 x 1.5	
Rohr di [mm]	13.0	16.0	19.6	25.6	32.0	
Armatur	1/2"	1/2"	3/4"	1"	11/4"	

Nr.	Material	Bemerkung	Länge [m]	Belastungswert (LU)	Dimension
1	Optipress 1.4521	1	27	10	28 × 1.2

Tab. 6: Dimensionierung Teilstrecke 1

Teilstrecken 2, 3 und 4:

Die Länge ergibt sich aus der Distanz des Verbrauchers bis zum Wasserzähler, resp. bis zum zentralen Druckminderer.

Für den LU-Wert werden die Belastungswerte summiert, die bis zur jeweiligen Teilstrecke abgeführt werden.

Länge = 27 m LU_2 = 20 LU_3 = 30 LU_4 = 50

Mit diesen Daten können die Rohrweiten der Tabelle entnommen werden. Sie gehören ebenfalls in den Geltungsbereich bis max. 35 m.

Belastungswert-Tabelle:	Optipress – ros	tbeständige Stah	Irohre			
Verteilsystem:	Installation mit	T-Stücken (Richt	ungsänderung m	it Formstücken)	22	1 1
Hersteller:	R. Nussbaum A	G, Olten			H	
SVGW Zertifikat Nr.:	0209-4548					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	da × s	da × s	$d_a \times s$	$d_a \times s$	da × s	
1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	
2	15 × 1	15 × 1	15 × 1	18 × 1	18 × 1	
3	18 × 1	18 × 1	18 × 1	18 × 1	22 × 1.2	S
4	18 × 1	18 × 1	18 × 1	22 × 1.2	22 × 1.2	Verteilleitung Geschwindigkeit max. 2 m/s
6	18 × 1	18 × 1	22 × 1.2	22 × 1.2	22 × 1.2	Z .
8	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	Verteilleitung /indigkeit max
10	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	illei keit
15	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	erte
20	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	28 × 1.2	> iw
30	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	jesc
40	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	
50	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
70	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
90	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	35 × 1.5	
120	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
150	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
Rohr da × s [mm]	15 × 1	18 × 1	22 × 1.2	28 × 1.2	35 × 1.5	
Rohr di [mm]	13.0	16.0	19.6	25.6	32.0	
Armatur	-		!		+	
Armatur	1/2 "	1/2 "	3/4"	1"	11/4"	

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
2	Optipress 1.4521	1	27	20	28 × 1.2
3	Optipress 1.4521	→	27	30	28 × 1.2
4	Optipress 1.4521	→	27	50	35 × 1.5

Tab. 7: Dimensionierung Teilstrecken 2, 3 und 4

Teilstrecke 5:

Die Länge ergibt sich aus der Distanz der angehängten Apparategruppe zum Hausanschluss.

Der LU-Wert ist der an der Teilstrecke angeschlossene LU-Wert.

Länge = 23.4 mLU = 10

Mit diesen Daten kann der Wert der Tabelle entnommen werden. Er gehört ebenfalls in den Geltungsbereich bis max. 35 m.

Belastungswert-Tabelle	Optipress – rost	beständige Stah	Irohre			
Verteilsystem:	Installation mit	T-Stücken (Richti	ungsänderung mi	it Formstücken)	Ħ	
Hersteller:	R. Nussbaum A	R. Nussbaum AG, Olten				
SVGW Zertifikat Nr.:	0209-4548					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	
1	15 × 1	15 × 1	15 × 1	15 × 1	15 ×1	
2	15 × 1	15 × 1	15 × 1	18 × 1	18 ×1	
3	18 × 1	18 × 1	18 × 1	18 × 1	22 × 1.2	S/I
4	18 × 1	18 × 1	18 × 1	22 × 1.2	22 × 1.2	Verteilleitung Geschwindigkeit max. 2 m/s
6	18 × 1	18 × 1	22 × 1.2	22 × 1.2	22 × 1.2	g lax.
8	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	Verteilleitung windigkeit ma
10	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	eille igke
15	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	/ert /ind
20	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	28 × 1.2	chw
30	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	Ges
40	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	
50	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
70	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
90	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	35 × 1.5	
120	35 × 1.5	35 x 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
150	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
Rohr da × s [mm]	15 × 1	18 × 1	22 × 1.2	28 × 1.2	35 × 1.5	
Rohr di [mm]	13.0	16.0	19.6	25.6	32.0	
Armatur	1/2"	1/2"	3/4"	1"	11/4"	

Nr.	Material	Bemerkung	Länge [m]	Belastungswert (LU)	Dimension
5	Optipress 1.4521	1	23.4	10	28 × 1.2

Tab. 8: Dimensionierung Teilstrecke 5

Teilstrecke 6:

Die Länge ergibt sich aus der Distanz der angehängten Apparategruppe zum Hausanschluss.

Der LU-Wert ist der an der Teilstrecke angeschlossene LU-Wert.

Länge = 19.2 m LU = 10

Mit diesen Daten kann der Wert der Tabelle entnommen werden. Er gehört in den Geltungsbereich bis 20 m.

Belastungswert-Tabelle:	Optipress – ros	tbeständige Stah	Irohre			
Verteilsystem:	Installation mit	T-Stücken (Richt	ungsänderung m	it Formstücken)	11	1 +
Hersteller:	R. Nussbaum A	G, Olten			+	
SVGW Zertifikat Nr.:	0209-4548					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	$d_a \times s$	da × s	da × s	$d_a \times s$	$d_a \times s$	
1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	
2	15 × 1	15 × 1	15 × 1	18 × 1	18 × 1	
3	18 × 1	18 × 1	18 × 1	18 × 1	22 × 1.2	
4	18 × 1	18 × 1	18 × 1	22 × 1.2	22 × 1.2	s/
6	18 × 1	18 × 1	22 × 1.2	22 × 1.2	22 × 1.2	2 m/s
8	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	Verteilleitung Geschwindigkeit max.
10	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	Verteilleitung vindigkeit ma
15	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	rteill Jigk
20	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	28 × 1.2	Vel
30	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	esch
40	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	Ğ
50	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
70	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
90	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	35 × 1.5	
120	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
150	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
Rohr da × s [mm]	15 × 1	18 × 1	22 × 1.2	28 × 1.2	35 × 1.5	
Rohr di [mm]	13.0	16.0	19.6	25.6	32.0	
Armatur	1/2"	1/2"	3/4"	1"	11/4"	

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
6	Optipress 1.4521	1	19.2	10	22 × 1.2

Tab. 9: Dimensionierung Teilstrecke 6

Teilstrecken 7 und 8:

Ausschlaggebend für die Länge ist die Distanz zwischen dem Anschluss der Apparategruppe an 7 und dem zentralen Druckminderer.

Für den LU-Wert werden die Belastungswerte summiert, die bis zur jeweiligen Teilstrecke abgeführt werden.

Länge = 20.4 m LU_7 = 10 LU_8 = 20

Mit diesen Daten kann der Wert der Tabelle entnommen werden. Er gehört ebenfalls in den Geltungsbereich bis max. 35 m.

Belastungswert-Tabelle:	Optipress – ros	tbeständige Stahl	Irohre			
Verteilsystem:	Installation mit	T-Stücken (Richtu	ungsänderung m	it Formstücken)	W .	1 +
Hersteller:	R. Nussbaum A	G, Olten			+	
SVGW Zertifikat Nr.:	0209-4548					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	da × s	$d_a \times s$	$d_a \times s$	da × s	$d_a \times s$	
1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	
2	15 × 1	15 × 1	15 × 1	18 × 1	18 × 1	
3	18 × 1	18 × 1	18 × 1	18 × 1	22 × 1.2	
4	18 × 1	18 × 1	18 × 1	22 × 1.2	22 × 1.2	<i>\s</i>
6	18 × 1	18 × 1	22 × 1.2	22 × 1.2	22 × 1.2	2 m/s
8	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	ÿ
10	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	Verteilleitung vindigkeit ma
15	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	rteill digk
20	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	28 × 1.2	Vel
30	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	ssch
40	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	Ğ
50	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
70	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
90	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	35 × 1.5	
120	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
150	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
Rohr da × s [mm]	15 × 1	18 × 1	22 × 1.2	28 × 1.2	35 × 1.5	
Rohr di [mm]	13.0	16.0	19.6	25.6	32.0	
Armatur	1/2"	1/2"	3/4"	1"	11/4"	

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
7	Optipress 1.4521	1	20.4	10	28 × 1.2
8	Optipress 1.4521	1	20.4	20	28 × 1.2

Tab. 10: Dimensionierung Teilstrecken 7 und 8

Teilstrecke 9:

Die Länge ergibt sich aus der Distanz der angehängten Apparategruppe zum zentralen Druckminderer.

Der LU-Wert ist der an der Teilstrecke angeschlossene LU-Wert.

Länge = 16.2 m LU = 10

Mit diesen Daten kann der Wert der Tabelle entnommen werden. Da die Teilstrecke grösser als 15 m aber kleiner als 20 m ist, wird die Spalte für die max. abgewickelte Länge von 20 m verwendet.

Belastungswert-Tabelle:	Optipress – rost	beständige Stahl	rohre			
Verteilsystem:	Installation mit	T-Stücken (Richtu	ıngsänderung mi	it Formstücken)	W .	1 1
Hersteller:	R. Nussbaum A	G, Olten			+	
SVGW Zertifikat Nr.:	0209-4548					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	da × s	$d_a \times s$	
1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	
2	15 × 1	15 × 1	15 × 1	18 × 1	18 × 1	
3	18 × 1	18 × 1	18 × 1	18 × 1	22 × 1.2	
4	18 × 1	18 × 1	18 × 1	22 × 1.2	22 × 1.2	s/
6	18 × 1	18 × 1	22 × 1.2	22 × 1.2	22 × 1.2	2 m/s
8	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	Verteilleitung Geschwindigkeit max.
10	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	Verteilleitung vindigkeit ma
15	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	rteill
20	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	28 × 1.2	Vel
30	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	ssch
40	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	Ğ
50	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
70	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
90	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	35 × 1.5	
120	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
150	35 × 1.5	35 x 1.5	35 x 1.5	35 × 1.5	35 × 1.5	
Rohr da × s [mm]	15 × 1	18 × 1	22 × 1.2	28 × 1.2	35 × 1.5	
Rohr di [mm]	13.0	16.0	19.6	25.6	32.0	
Armatur	1/2"	1/2"	3/4"	1"	11/4"	

	Nr.	Material	Bemerkung	Länge [m]	Belastungswert (LU)	Dimension
ľ	9	Optipress 1.4521	1	16.2	10	22 × 1.2

Tab. 11: Dimensionierung Teilstrecke 9

Die Teilstrecken 1 bis 9 sind dimensioniert:

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
1	Optipress 1.4521	1	27	10	28 × 1.2
2	Optipress 1.4521	1	27	20	28 × 1.2
3	Optipress 1.4521	→	27	30	28 × 1.2
4	Optipress 1.4521	→	27	50	35 × 1.5
5	Optipress 1.4521	1	23.4	10	28 × 1.2
6	Optipress 1.4521	1	19.2	10	22 × 1.2
7	Optipress 1.4521	1	20.4	10	28 × 1.2
8	Optipress 1.4521	1	20.4	20	28 × 1.2
9	Optipress 1.4521	1	16.2	10	22 × 1.2

- → Kellerverteilung
- **↑** Steigzone

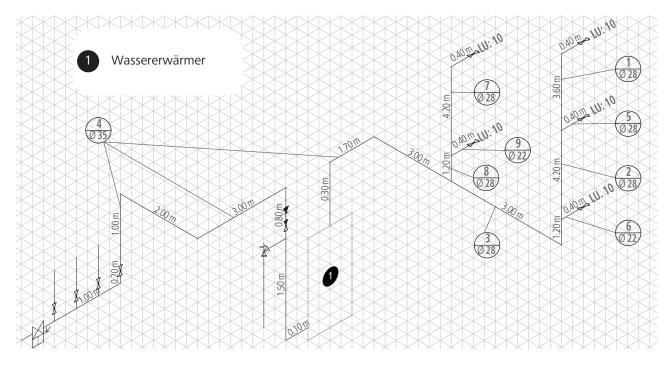


Abb. 7: Lösung Rohrweitenbestimmung WW-Verteilung Optipress

3.3.3.3 Rohrweitenbestimmung Stockwerkverteilung

Stockwerkverteilung Warmwasser mit Ausstossleitungen in Optiflex-Profix

In diesem Beispiel wird die Rohrweitenbestimmung der Warmwasserleitung einer Stockwerkverteilung gezeigt.

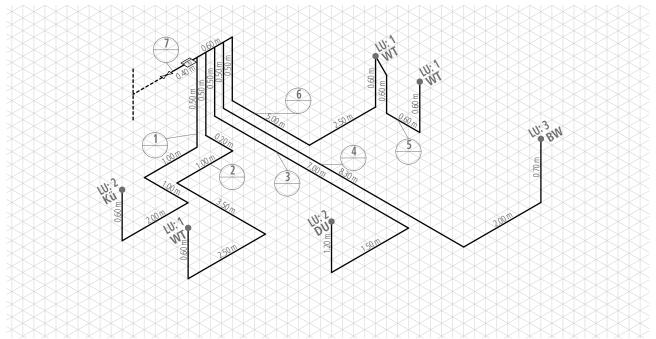


Abb. 8: Isometrie der WW-Verteilung auf der Etage mit Ausstossleitungen in Optiflex-Profix

 $\ddot{\text{Ku}} = \ddot{\text{Ku}}$ = $\ddot{\text{BW}}$ = $\ddot{\text{Badewanne}}$ WT = $\ddot{\text{Waschtisch}}$ DU = $\ddot{\text{Dusche}}$

Bevor mit der Rohrweitenbestimmung begonnen werden kann, müssen den Verbrauchern die Belastungswerte zugeteilt werden. Auskünfte über die Belastungswerte sind im Kapitel «Neue Belastungswerte» in der Tabelle «Belastungswert (LU)» zu finden, « «Neue Belastungswerte», Seite 19.

Die Teilstrecken sind für die Rohrweitenbestimmung von 1 bis 7 durchnummeriert. Als Produktlinie wird Optiflex-Profix gewählt.

Teilstrecken 1 bis 4:

LU = Der an der Teilstrecke angeschlossene Belastungswert (2 LU, 1 LU, 2 LU, 3 LU)

Nr.	Material	Bemerkung	Länge [m]	Belastungswert (LU)	Dimension
1	Optiflex-Profix	111		2	
2	Optiflex-Profix	## >		1	
3	Optiflex-Profix	***		2	
4	Optiflex-Profix	111		3	

Tab. 12: Belastungswerte Teilstrecken 1 bis 4

Ausstossleitung

Teilstrecken 5, 6 und 7:

LU = Die Summe der Belastungswerte der angeschlossenen Verbraucher (1 LU, 2 LU, 10 LU)

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
5	Optiflex-Profix	Т		1	
6	Optiflex-Profix	Т		2	
7	Optiflex-Profix	Т		10	

Tab. 13: Belastungswerte Teilstrecken 5, 6 und 7

T T-Stück-Verteilung

Neben dem Belastungswert wird für die Rohrweitenbestimmung die Leitungslänge von der Etagenabsperrung bis zum Verbraucher bestimmt.

Teilstrecken 1 bis 4:

Länge = Die Distanz des jeweiligen Verbrauchers zur Etagenabsperrung

Teilstrecken 5 und 6:

Länge = Die Distanz des weiter entfernten Verbrauchers zur Etagenabsperrung

Teilstrecken 7:

Länge = Die Distanz des am weitesten entfernten Verbraucher bis zum Etagenabsperrung (jedoch max. 15 m) In diesem Beispiel gleich Länge der Teilstrecke 4 (12.5 m)

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
1	Optiflex-Profix	111	6.1	2	
2	Optiflex-Profix	111	9.3	1	
3	Optiflex-Profix	111	11.2	2	
4	Optiflex-Profix	111	12.5	3	
5	Optiflex-Profix	Т	11.4	1	
6	Optiflex-Profix	Т	11.4	2	
7	Optiflex-Profix	T	12.5	10	

Tab. 14: Belastungswerte und Längen der Teilstrecken 1 bis 7

Mit diesen Daten kann die Rohrweite der **Teilstrecke 1** der produktspezifischen Tabelle entnommen werden. In diesem Beispiel wird eine Etage **mit** Wasserzähler gezeigt. Es wird die Spalte 10 m verwendet, da die Länge von 6.1 m über 5 m aber unter 10 m liegt.

Belastungswert-Tabelle:	Optiflex-Prof	Optiflex-Profix – Kunststoffrohre PE-Xc / PE-RT							
Verteilsystem:	Installation r	Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)							
Hersteller:	R. Nussbaum	AG, Olten					"TÜİİ		
SVGW Zertifikat Nr.:	0901-5482 /	1507-6398							
Max. abgewickelte Länge [m]		5		10	1	15	m/s		
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	ر ور 4		
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung Geschwindigkeit max. 4		
1	16 × 3.8	16 × 3.8	16 × 3.8	16 × 3.8	16 × 3.8	16 × 2.2	gru _l		
2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	rate verk digk		
3	16 × 2.2	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	ppal		
4	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	Stc Schv		
5	20 × 2.8	kein Zähler	20 × 2.8	kein Zähler	_	_	Ge		
Rohr da × s [mm]	16 × 3.8	16 × 2.2	20 × 2.8						
Rohr di [mm]	8.4	11.4	14.4						
Armatur	1/2"	1/2"	1/2"						
Geradsitz-Absperrarmatur ¾" u	nd Verteiler ¾	4" sind im Ber	echnungsmo	dell berücksich	tigt				

d_a [mm] = Aussendurchmesser
d_i [mm] = Innendurchmesser
s [mm] = Wandstärke des Rohrs

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
1	Optiflex-Profix	111	6.1	2	16 × 2.2

Tab. 15: Dimensionierung Teilstrecke 1

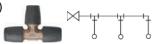
Für die **Teilstrecke 5** sind 1 LU und 11.4 m entscheidend.

Für die Teilstrecke 6 sind 2 LU und 11.4 m entscheidend.

Für die Teilstrecke 7 sind 10 LU und 12.5 m entscheidend.

Für die Teilstrecken 5 und 6 muss die Tabelle Installation mit T-Stücken verwendet werden, da die Doppeldosen jeweils einem T-Stück entsprechen.

Bei der Teilstrecke 7 entspricht der Verteiler mehreren aneinander gereihten T-Stücken. Demzufolge kommt ebenfalls die Tabelle mit T-Stücken zum Einsatz.



Belastungswert-Tabelle: Optiflex-Profix – Kunststoffrohre PB / PE-RT

Verteilsystem: Installation mit T-Stücken (Richtungsänderungen mit Formstücken)

Hersteller: R. Nussbaum AG, Olten

SVGW Zertifikat Nr.: 0908-5605 / 1507-6398

Max. abgewickelte Länge [m]	!	5	1	0	1	5	
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	D
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	ilun
1	16 × 3.8	16 × 3.8	16 × 3.8	16 × 3.8	16 × 2.2	16 × 2.2	erte m/s
2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	erkv x. 3
3	16 × 2.2	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	Stockwerkverteilung keit max. 3 m/s
4	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	rategruppe / Stockwer Geschwindigkeit max.
5	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	ppe /
6	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	grup
8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	Apparategruppe Geschwindi
10	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	ppai
12	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	∢
15	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	
Rohr da × s [mm]	16 × 3.8	16 × 2.2	20 × 2.8	25 × 2.7			
Rohr di [mm]	8.4	11.4	14.4	19.6			
Armatur	1/2"	1/2"	1/2"	3/4"			

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
5	Optiflex-Profix	Т	11.4	1	16 × 2.2
6	Optiflex-Profix	Т	11.4	2	16 × 2.2
7	Optiflex-Profix	T	12.5	10	25 × 2.7

Tab. 16: Dimensionierung Teilstrecke 5 bis 7

Die Teilstrecken 1 bis 7 sind dimensioniert:

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
1	Optiflex-Profix	## >	6.1	2	16 × 2.2
2	Optiflex-Profix	111	9.3	1	16 × 3.8
3	Optiflex-Profix	111	11.2	2	16 × 2.2
4	Optiflex-Profix	111	12.5	3	20 × 2.8
5	Optiflex-Profix	Т	11.4	1	16 × 2.2
6	Optiflex-Profix	Т	11.4	2	16 × 2.2
7	Optiflex-Profix	T	12.5	10	25 × 2.7

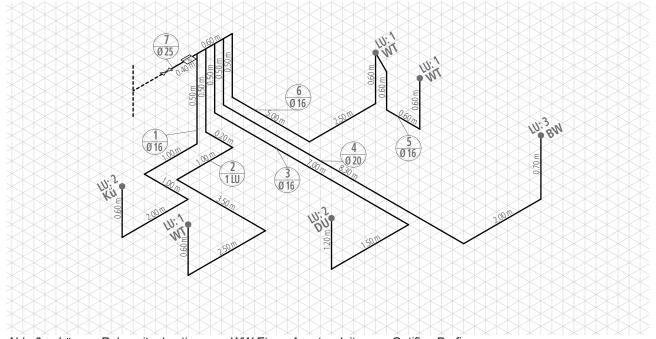


Abb. 9: Lösung Rohrweitenbestimmung WW Etage Ausstossleitungen Optiflex-Profix

Stockwerkverteilung Kaltwasser, T-Stück mit Formstücken in Optiflex-Profix

In diesem Beispiel wird die Rohrweitenbestimmung der Kaltwasserleitung einer Stockwerkverteilung gezeigt.

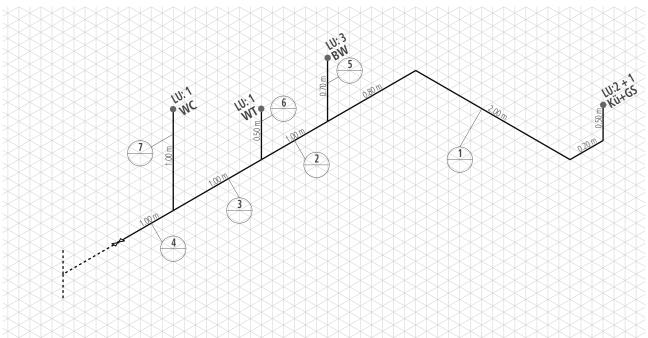


Abb. 10: Isometrie der Stockwerkverteilung KW/T-Stück mit Formstücken in Optiflex-Profix

 $K\ddot{u}=K\ddot{u}$ = Küche BW = Badewanne WT = Waschtisch GS = Geschirrspüler

Bevor mit der Rohrweitenbestimmung begonnen werden kann, müssen den Verbrauchern die Belastungswerte zugeteilt werden. Auskünfte über die Belastungswerte sind im Kapitel «Neue Belastungswerte» in der Tabelle «Belastungswert (LU)» zu finden, « «Neue Belastungswerte», Seite 19.

Teilstrecke 1:

LU = Der an der Teilstrecke angeschlossene Belastungswert (3 LU)

Teilstrecken 2 bis 4:

LU = Die Summe der Belastungswerte der angeschlossenen Verbraucher (6 LU, 7 LU, 8 LU)

Teilstrecken 5 bis 7:

LU = Nur der direkt angeschlossene Verbraucher-Belastungswert (3 LU, 1 LU, 1 LU)

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
1	Optiflex-Profix	\Rightarrow		3	
2	Optiflex-Profix			6	
3	Optiflex-Profix	\Rightarrow		7	
4	Optiflex-Profix	\Rightarrow		8	
5	Optiflex-Profix	\Rightarrow		3	
6	Optiflex-Profix	\Rightarrow		1	
7	Optiflex-Profix	\Rightarrow		1	

Tab. 17: Belastungswerte Teilstrecken 1 bis 7

Neben dem Belastungswert wird für die Rohrweitenbestimmung die Länge von der Etagenabsperrung bis zum Verbraucher bestimmt.

Teilstrecken 1 bis 4:

Länge = Die Distanz des am weitesten entfernten Verbraucher bis zur Etagenabsperrung (jedoch max. 15 m)

 $L\ddot{a}nge = 6.5 \, m$

Teilstrecken 5, 6 und 7:

Länge = Die Distanz des jeweiligen Verbrauchers zur Etagenabsperrung

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
1	Optiflex-Profix	\Rightarrow	6.5	3	
2	Optiflex-Profix	\Rightarrow	6.5	6	
3	Optiflex-Profix	\Rightarrow	6.5	7	
4	Optiflex-Profix	\Rightarrow	6.5	8	
5	Optiflex-Profix	\Rightarrow	3.7	3	
6	Optiflex-Profix	\Rightarrow	2.5	1	
7	Optiflex-Profix	\Rightarrow	2.0	1	

Tab. 18: Belastungswerte und Längen der Teilstrecken 1 bis 7

Mit diesen Daten können die Rohrweiten der produktspezifischen Tabelle entnommen werden. In diesem Beispiel wird eine Etage **ohne** Wasserzähler gezeigt.

Da die Länge der **Teilstrecke 1** mit 6.5 m grösser als 5 m aber kleiner als 10 m ist, wird die Spalte für die max. abgewickelte Länge von 10 m verwendet (ohne Wasserzähler).

Beispiel für Teilstrecke 1:

Belastungswert-Tabelle:	Optiflex-Prof	ix – Kunststoff	rohre PE-Xc / F	PE-RT									
Verteilsystem:	Installation mit T-Stücken (Richtungsänderung mit Formstücken)												
Hersteller:	R. Nussbaum	AG, Olten					'+' '+' ' +						
SVGW Zertifikat Nr.:	0901-5482 / 1	1507-6398											
Max. abgewickelte Länge [m]	!	5	1	0	1	5							
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	ס						
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung Geschwindigkeit max. 3 m/s						
1	16 × 3.8	16 × 3.8	16 × 3.8	16 × 3.8	16 × 2.2	16 × 2.2	'erte m/s						
2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	erk x. 3						
3	16 × 2.2	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	ckw : ma						
4	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	' Sto Jkeit						
5	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	pe / ndig						
6	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	-	grup						
8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	-	rategruppe / Stockwerkverte Geschwindigkeit max. 3 m/s						
10	20 × 2.8	20 × 2.8	20 × 2.8	-	-	-	ppai)						
12	20 × 2.8	20 × 2.8	20 × 2.8	-	-	-	⋖						
15	-	-	-	_	-	-							
Rohr da × s [mm]	16 × 3.8	16 × 2.2	20 × 2.8										
Rohr di [mm]	8.4	11.4	14.4										
Armatur	1/2 "	1/2 "	1/2"										

ı	Nr.	Material	Bemerkung	Länge [m]	Belastungswert (LU)	Dimension
	1	Optiflex-Profix	\Rightarrow	6.5	3	16 × 2.2

Tab. 19: Dimensionierung Teilstrecke 1

Mit der gleichen Vorgehensweise die übrigen Teilstrecken dimensionieren:

Nr.	Material	Bemerkung	Länge	Belastungswert	Dimension
			[m]	(LU)	
1	Optiflex-Profix	\Rightarrow	6.5	3	16 × 2.2
2	Optiflex-Profix	\Rightarrow	6.5	6	20 × 2.8
3	Optiflex-Profix	\Rightarrow	6.5	7	20 × 2.8
4	Optiflex-Profix	\Rightarrow	6.5	8	20 × 2.8
5	Optiflex-Profix	\Rightarrow	3.7	3	16 × 2.2
6	Optiflex-Profix	\Rightarrow	2.5	1	16 × 3.8
7	Optiflex-Profix	\Rightarrow	2.0	1	16 × 3.8

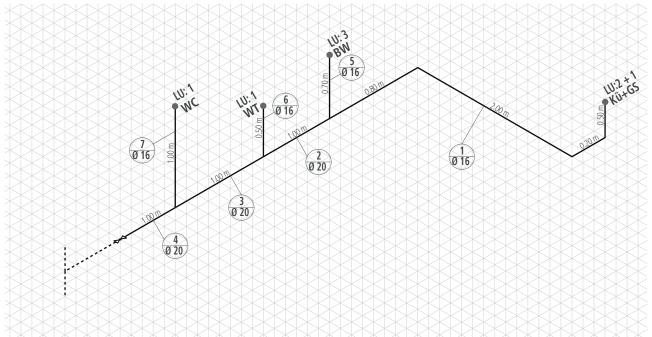


Abb. 11: Lösung Rohrweitenbestimmung Stockwerkverteilung KW, T-Stück mit Formstücken in Optiflex-Profix

3.3.4 Berechnungsmethode

Mit der Berechnungsmethode können Leitungsnetze genau dimensioniert werden.

Eine wichtige Grösse in der Strömungslehre und massgebender Parameter für die Dimensionierung von Leitungsnetzen ist der Zeta-Wert. Höhere Zeta-Werte bei Form-und Verbindungsstücken führen zu grösseren Rohrdurchmessern und Wasserinhalten in Verteilsystemen. Dagegen ermöglichen strömungsgünstige Bauteile beziehungsweise niedrige Zeta-Werte den Einsatz kleinerer Rohrdimensionen. Somit besteht eine enge Interaktion zwischen Zeta-Werten, Sicherheit und Wirtschaftlichkeit einerseits und druckverlustoptimierten Trinkwasserinstallationen anderseits.

Mit Zeta-Werten kann die gesamte Installation gerechnet und verifiziert werden.

3.3.4.1 Hilfsmittel zur Druckverlustberechnung

Nussbaum stellt online unter www.nussbaum.ch/planungstools Excel-Tools zur Druckverlustberechnung zur Verfügung:

- · Druckverlustberechnung für Trinkwasserinstallationen
- Druckverlustberechnung für Gasinstallationen

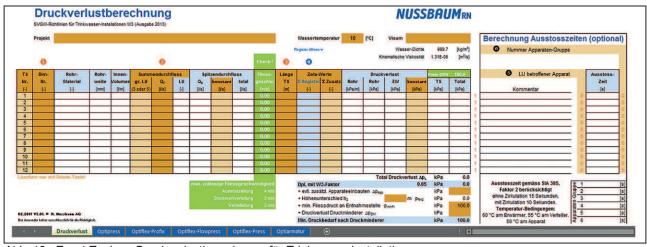


Abb. 12: Excel-Tool zur Druckverlustberechnung für Trinkwasserinstallationen

					Projet	kt / Anlage											Gas-Pa	JSSE rameter lebheizwert		[ktWh/m*]		
		0									Check!						Max. D	ruckverlust gas-Dichte		[mbar]		
							Verte aus Register "Volumer				Max 6 m/s	۰	Verte aus Register "Zeta-Verte" T					Viskosität				
ĺ	ė e	Dim-	Rohr- Material	Rohr- weite	0-		Volume		100000		Fliess-	Länge TS	Zeta-We	erte Σ Zusatz		Dr Rohr	uckverle EW	konstant	TS			
	trecken	10000	100000000000000000000000000000000000000	100 M 100 M	Qa	Va = Qa/Hib Historocky	G114443.1.	Va max 61144.3.2	Vfrei Sunne 15		geschw.		ΣRegister		Rohr		200	200000000000000000000000000000000000000	DOM:	Total		
	Zähler	[-]	[-]	[mm]	[kW]	[m ³ /h]	[m³/h]	[m³/h]	[m³/h]	(m³/h)	[m/s]	[m]	(-)	[-]	[mbar/m]	[mbar]	[mbar]	[mbar]	[mbar]	[mbar]	Bemerkungen	
	1										0.00	-						0.800	0.800	0.800		0.8
	2			_		_					0.00	_	_						0.000	0.000		0
	3					_					0.00								0.000	0.000		0
	4										0.00								0.000	0.000		0
i	5										0.00								0.000	0.000	1	D
	6										0.00								0.000	0.000	1	0
Ī	7										0.00	1							0.000	0.000	1	0
	8										0.00								0.000	0.000	1	0
	9	1			į.						0.00								0.000	0.000	1	0
	10										0.00			16	2				0.000	0.000	1	0
	11										0.00				_				0.000	0.000	1	0
ì	12										0.00				,				0.000	0.000	1	0

Abb. 13: Excel-Tool zur Druckverlustberechnung für Gasinstallationen

3.3.4.2 Formeln zur Druckverlustberechnung bei Fittings

Zur Berechnung des Druckverlusts bei Fittings werden u. a. folgende Formeln angewendet:

$\dot{V} = \frac{\Delta V}{\Delta t}$	Volumenstrom ▼ [I/s]	Unter Volumenstrom versteht man den Inhalt (ΔV) eines Mediums, der sich innerhalb einer Zeiteinheit (Δt) durch einen Querschnitt bewegt. In einem geschlossenen System (ohne Volumendifferenzen durch Zu- oder Abflüsse) ist der Volumenstrom konstant.
$v = \frac{\dot{V}}{A}$	Fliessgeschwindigkeit	Die Fliessgeschwindigkeit ist vom Querschnitt (A) abhängig und kann
^	v [m/s]	aus dem Volumenstrom (V) abgeleitet werden. Bei einem konstanten
		Volumenstrom steigt oder sinkt die Fliessgeschwindigkeit, wenn die Querschnittsfläche (A) verkleinert beziehungsweise vergrössert wird.
$\Delta p = \zeta \cdot \rho \cdot \frac{v^2}{2}$	Druckverlust	Das Produkt aus dem Druckverlustbeiwert ζ^* (Zeta), der Dichte ρ^{**} des
-r , r ₂	Δp [Pa]	durch das System oder Bauteil fliessenden Mediums und der kinetischen Energie v²/2 ergibt den jeweiligen Druckverlust.
* Unabhängig vo	om eingesetzten Medium	

^{**} Z. B. Dichte des Wassers bei 20 °C: 998 kg/m³

3.3.4.3 Diagramme und Zeta-Wert-Tabellen

Die Zeta-Werte werden im Online-Shop auf www.nussbaum.ch laufend aktualisiert.

Nussbaum stellt im Internet ein Software-Tool zur Rohr-Vordimensionierung für Kaltwasserinstallationen zur Verfügung: www.nussbaum.ch/planungstools

Druckverlustdiagramm für Optipress-Edelstahlrohre

Das Rohrreibungsdruckgefälle R [hPa/m] in Abhängigkeit von Volumenstrom [l/s] (bzw. Massenstrom [kg/h]) und Fliessgeschwindigkeit v [m/s].

Rohrrauigkeit k = 0.0015 mm

Bezugstemperatur t = 10 °C

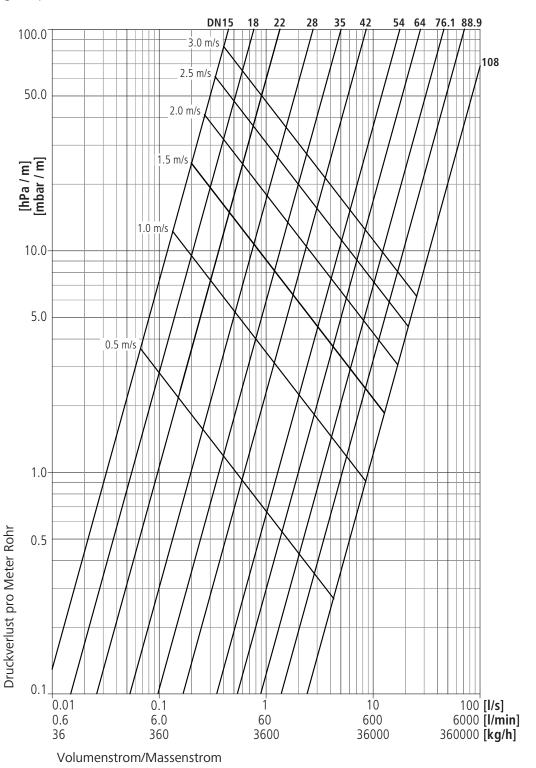


Abb. 14: Druckverlustdiagramm für Optipress-Edelstahlrohre

Zeta-Werte und äquivalente Rohrlängen von Optipress-Rotguss-Pressfittings und Armaturen

Zeta-Werte und äquivalente Rohrlängen von Optipress-Rotguss-Pressfittings sowie von Leitungsarmaturen bei Spitzenvolumenstrom.

Fittingart/Arma	aturenart			Z	eta-Wert	ζ		
Werkstoff: Rot	guss			Äquivale	nte Rohrlä	ingen [m]		
Symbol	Aussendurchmesser d _a	15	18	22	28	35	42	54
	Nenndurchmesser DN	12	15	20	25	32	40	50
	Anschlusswinkel	1.6	1.6	1.6				
		1.1	1.3	1.6				
	Übergang	0.4	0.2	0.2	0.2	0.2	0.1	0.1
		0.3	0.2	0.2	0.3	0.3	0.2	0.3
	Übergang zu Schnellkupp-			0.2				
Minerity	lung			0.2				
	Schnellkupplung mit			0.2				
	Überwurfmutter			0.2				
~_1 <i>></i>	Schrägsitzventil	2.3	2.1	1.7	1.4	1.2	1.6	1.5
		1.5	1.7	1.7	1.9	2.0	3.3	3.9
	Unterputz Geradsitzventil	6.5	5.7	7.4	7.1			
		4.4	4.7	4.6	9.4			
	Unterputz Geradsitzventil			10.5				
				10.5				
T	Geradsitzventil			10.5				
				10.5				

Tab. 20: Zeta-Werte und äquivalente Rohrlängen von Optipress-Rotguss- Pressfittings und Armaturen

Die Zeta-Werte für Optipress-Edelstahlrohre bei Spitzenvolumenstrom sind folgender Tabelle zu entnehmen:

Rohrart	Zeta-Wert ζ pro m Rohr								
Werkstoff: Ede	elstahl								
Symbol	Aussendurchmesser d _a	15	18	22	28	35	42	54	
	Nenndurchmesser DN	12	15	20	25	32	40	50	
	Rohr 1.4401/1.4520/1.4521	1.5	1.2	1.0	0.8	0.6	0.5	0.4	

Tab. 21: Zeta-Werte Edelstahlrohr

Zeta-Werte und äquivalente Rohrlängen von Optipress-Edelstahl-Pressfittings und Armaturen

Fittingart/Ar	maturenart					Zet	ta-We	rt ζ				
Werkstoff: E	delstahl 1.4401				Äqui	valent	e Roh	rlänge	n [m]			
Symbol	Aussendurchmesser d _a	15	18	22	28	35	42	54	64	76.1	88.9	108
	Nenndurchmesser DN		15	20	25	32	40	50	60	65	80	100
	Anschlusswinkel	1.6	2.0	1.6	1.3							
		1.1	1.7	1.7	1.7							
1	T-Stück Egal - Abzweig	1.3	1.2	1.1	1.1	0.9	0.9	0.9	8.0	8.0	0.7	0.6
↓ 1	·	0.9	1.0	1.2	1.5	1.4	1.7	2.3	2.4	2.8	2.9	3.2
<u>→</u> ¶.	T-Stück Egal - Durchfluss	0.3	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
=		0.2	0.3	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	Bogen 90°	0.8	0.5	0.3	0.4	0.2	0.3	0.3	0.3	0.2	0.2	0.2
		0.5	0.4	0.3	0.5	0.4	0.5	0.8	0.8	0.9	0.9	0.9
10	Bogen 45°	0.5	0.4	0.4	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.1
	-	0.3	0.4	0.7	0.5	0.4	0.5	0.6	0.5	0.6	0.7	0.7
	Schrägsitzventil	2.3	2.1	1.7	1.4	1.2	1.6	1.5				
		1.5	1.7	1.7	1.9	2.0	3.3	3.9				

Tab. 22: Zeta-Werte und äquivalente Rohrlängen von Optipress-Edelstahl-Pressfittings sowie von Leitungsarmaturen bei Spitzenvolumenstrom.

Die Zeta-Werte für Optipress-Edelstahlrohre bei Spitzenvolumenstrom sind folgender Tabelle zu entnehmen:

Rohrart					Zet	a-Wei	rt ζ pr	o m R	ohr			
Werkstoff: Ede	elstahl											
Symbol	Aussendurchmesser d _a	15	18	22	28	35	42	54	64	76.1	88.9	108
	Nenndurchmesser DN	12	15	20	25	32	40	50	60	65	80	100
	Rohr 1.4401/1.4520/1.4521	1.5	1.2	1.0	8.0	0.6	0.5	0.4	0.3	0.3	0.2	0.2

Tab. 23: Zeta-Werte Edelstahlrohr

Druckverlustdiagramm für Optiflex-Kunststoffrohre flexibel und formstabil

Das Rohrreibungsdruckgefälle R [hPa/m] in Abhängigkeit von Volumenstrom [l/s] und Fliessgeschwindigkeit v [m/s] für Rohre aus Kunststoff.

Rohrrauigkeit k = 0.007 mm

Bezugstemperatur t = 10 °C

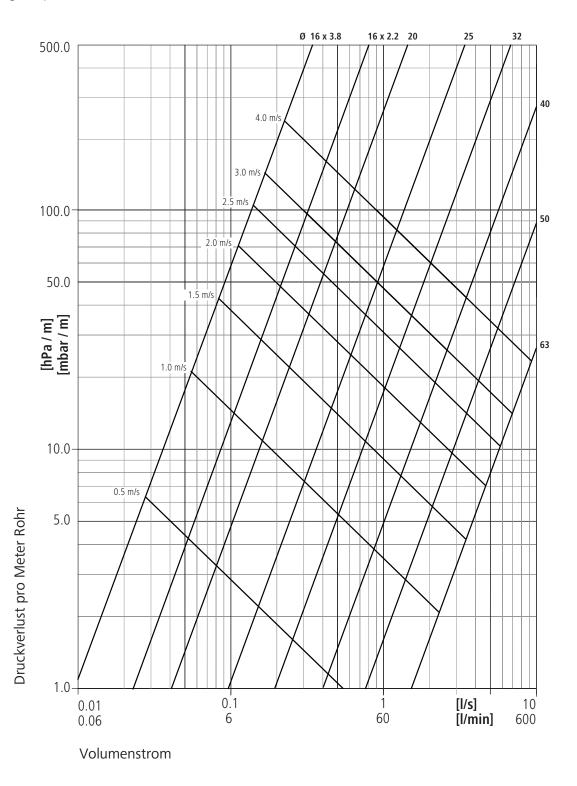


Abb. 15: Druckverlustdiagramm für Optiflex-Kunststoffrohre

Zeta-Werte für Optiflex-Kunststoffrohre flexibel und formstabil

Rohrart		Zeta-Wert ζ pro m Rohr							
Werkstoff: PE-	·Xc / PB / *PE-RT								
Symbol	Aussendurchmesser d _a	16*	16	20	25	32	40	50	63
	Nenndurchmesser DN	10 12 15 20 25 32 40 50					50		
	Rohre flexibel/formstabil	3.2	2.0	1.6	1.1	8.0	0.6	0.4	0.3

Tab. 24: Zeta-Werte für Optiflex-Kunststoffrohre flexibel und formstabil bei Spitzenvolumenstrom

Zeta-Werte und äquivalente Rohrlängen von Optiflex-Flowpress-Pressfittings und Armaturen aus Rotguss

Fittinga	rt/Arm	aturenart			Z	eta-Wert	ζ		
Werksto	off: Rot	tguss			Äquivale	nte Rohrlâ	ängen [m]		
Symbol		Aussendurchmesser d _a	16	20	25	32	40	50	63
		Nenndurchmesser DN	12	15	20	25	30	40	50
		Dose 90°	4.0	2.9					
1	Ī		2.0	1.8					
	To a	Anschlusswinkel	2.1	1.7					
			1.0	1.1					
		Doppeldose - Ausfluss	4.1	3.9					
//\			2.0	2.4					
\ <u>\</u> "		Doppeldose - Durchfluss	2.4	2.7					
//4/			1.2	1.7					
		Doppel-Anschlusswinkel -	3.9	2.9					
//\		Ausfluss	1.9	1.8					
Δ"		Doppel-Anschlusswinkel -	2.8	2.3					
//3/		Durchfluss	1.4	1.4					
-		T-Stück Egal - Abzweig	2.3	1.8	1.4	1.5	1.1	1.0	0.8
V 1			1.1	1.1	1.3	1.9	1.8	2.5	2.6
<u></u>		T-Stück Egal - Durchfluss	8.0	1.0	0.6	0.5	0.5	0.5	0.5
			0.4	0.6	0.5	0.6	0.8	1.2	1.6
		Bogen 90°	1.7	1.5	1.2	1.2	0.9	0.8	8.0
1			0.8	0.9	1.1	1.5	1.5	2.0	2.6
7		Bogen 45°			0.6	0.7	0.7	0.6	0.5
1	1				0.5	0.9	1.2	1.5	1.6
		Kupplung	0.7	0.8	0.5	0.5	0.5	0.4	0.3
	INTERNATION OF THE PERSON OF T		0.3	0.5	0.5	0.6	0.8	1.0	1.0
		Übergang	0.8	0.9	0.6	0.6	0.6	0.4	
			0.4	0.6	0.5	0.7	1.0	1.0	

Fittingart/Arm	aturenart	Zeta-Wert ζ						
Werkstoff: Rot	guss			Äquivale	nte Rohrlä	ingen [m]		
Symbol	Aussendurchmesser d _a	16	20	25	32	40	50	63
	Nenndurchmesser DN	12	15	20	25	30	40	50
→	Verteiler Abzweig	D:- \\/-			al la atral a a r	"II · " ·		
THE RES	Verteiler Durchfluss	Die Werte des Verteilers sind bei den Übergängen dazu						erecnnet
	Verteiler mit Stecküber-	3.4						
HAR B	gang gerade	1.1						
100	Verteiler mit Stecküber-	2.4	1.9					
HAR H	gang gerade	1.2	1.2	-				
	Verteiler mit Stecküber-	3.5						
HE HE HE	gang gekröpft	1.1						
1994	Verteiler mit Stecküber-	2.5	3.4					
-14 14 18° (#	gang gekröpft	1.2	2.1					
Mac C	Übergang	8.0	0.9					
24-42		0.4	0.6					
	Übergang zu Schnellkupp-			0.3				
	lung			0.3				
	Schnellkupplung mit			0.3				
	Überwurfmutter			0.3				
\bowtie	Absperren/Messen mit			24.2				
	Messkapsel			22.0				
\bowtie	Absperren/Messen mit			14.9				
	Verschlusszapfen			13.5				
	Unterputz Geradsitzventil			10.5				
				9.5				
T	Geradsitzventil			10.5				
				9.5				

Tab. 25: Zeta-Werte und äquivalente Rohrlängen von Optiflex-Flowpress-Pressfittings sowie von Leitungsarmaturen bei Spitzenvolumenstrom

Zeta-Werte und äquivalente Rohrlängen von Optiflex-Profix

Fittingart/Ar	maturenart		Zeta-\	Wert ζ	
Werkstoff: F	Rotguss/Kunststoff		Äquivalente F	Rohrlängen [m]	
Symbol	Aussendurchmesser d _a	16	16	20	25
	Nenndurchmesser DN	10	12	15	20
	Dose 90° + Anschlusswinkel	1.8	1.4	1.4	
		0.6	0.7	0.9	
	Doppeldose - Ausfluss	2.0	1.3	2.1	
//\ M	1	0.6	0.7	1.3	
A"	Doppeldose - Durchfluss	2.0	1.2	1.5	
//3/	1	0.6	0.6	0.9	
	Bogen 90°	1.4	0.7	0.6	0.5
		0.4	0.3	0.4	0.5
	Kupplung, Muffe, Übergang	1.0	0.3	0.2	0.1
	-	0.3	0.1	0.2	0.1
- Q	T-Stück Egal - Abzweig	2.0	0.9	0.9	1.1
7	•	0.6	0.4	0.6	0.1
<u>→</u> 0_	T-Stück Egal - Durchfluss	1.3	0.4	0.3	0.2
	•	0.4	0.2	0.2	0.2
→ → _{14.78}	Verteiler Durchfluss	Die Werte des V	erteilers sind bei	den Übergängen	dazu gerechr
	7E*				
- And Online	Verteiler mit Steckübergang	1.9	1.9	1.4	
H H H		1.9 0.9	1.9 0.9	1.4 0.9	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang				
н н н н (Verteiler mit Steckübergang gerade	0.9	0.9	0.9	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupp-	0.9 1.8	0.9 1.8	0.9 2.5	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft	0.9 1.8	0.9 1.8	0.9 2.5 1.6	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupplung Schnellkupplung mit Über-	0.9 1.8	0.9 1.8	0.9 2.5 1.6 0.8	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupplung	0.9 1.8	0.9 1.8	0.9 2.5 1.6 0.8 0.5	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupplung Schnellkupplung mit Überwurfmutter Absperren/Messen mit Mess-	0.9 1.8	0.9 1.8	0.9 2.5 1.6 0.8 0.5 0.8	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupplung Schnellkupplung mit Überwurfmutter	0.9 1.8	0.9 1.8	0.9 2.5 1.6 0.8 0.5 0.8	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupplung Schnellkupplung mit Überwurfmutter Absperren/Messen mit Messkapsel Absperren/Messen mit Ver-	0.9 1.8	0.9 1.8	0.9 2.5 1.6 0.8 0.5 0.8 24.2 22.0 14.9	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupplung Schnellkupplung mit Überwurfmutter Absperren/Messen mit Messkapsel	0.9 1.8	0.9 1.8	0.9 2.5 1.6 0.8 0.5 0.8 24.2 22.0	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupplung Schnellkupplung mit Überwurfmutter Absperren/Messen mit Messkapsel Absperren/Messen mit Ver-	0.9 1.8	0.9 1.8	0.9 2.5 1.6 0.8 0.5 0.8 24.2 22.0 14.9	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupplung Schnellkupplung mit Überwurfmutter Absperren/Messen mit Messkapsel Absperren/Messen mit Verschlusszapfen	0.9 1.8	0.9 1.8	0.9 2.5 1.6 0.8 0.5 0.8 24.2 22.0 14.9 13.5	
	Verteiler mit Steckübergang gerade Verteiler mit Steckübergang gekröpft Übergang zu Schnellkupplung Schnellkupplung mit Überwurfmutter Absperren/Messen mit Messkapsel Absperren/Messen mit Verschlusszapfen	0.9 1.8	0.9 1.8	0.9 2.5 1.6 0.8 0.5 0.8 0.5 24.2 22.0 14.9 13.5 10.5	

Tab. 26: Zeta-Werte und äquivalente Rohrlängen von Optiflex-Profix sowie von Leitungsarmaturen bei Spitzenvolumenstrom

3.3.4.4 Nussbaum Belastungswerttabellen

Werkstoff	Verteilsystem
	«Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)», Seite 46
Optiflex-Profix-Kunststoffrohre PE-Xc/PE-RT	«Installation mit T-Stücken (Richtungsänderung mit Form- stücken)», Seite 46
	«Installation mit T-Stücken (Richtungsänderung mit Formstücken)», Seite 47
	«Installation mit Ausstossleitung (Richtungsänderung mit Formstücken)», Seite 47
Optipress rostbeständige Stahlrohre	«Installation mit T-Stücken (Richtungsänderung mit Form- stücken)», Seite 48
	«Installation mit T-Stücken (Richtungsänderung mit Form- stücken)», Seite 48
	«Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)», Seite 49
Optiflex-Profix-Kunststoffrohre PB/PE-RT	«Installation mit T-Stücken (Richtungsänderung mit Formstücken)», Seite 49
	«Installation mit T-Stücken (Richtungsänderung mit Formstücken)», Seite 50
	«Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)», Seite 50
Optiflex-Flowpress-Kunststoffrohre PE-Xc	«Installation mit T-Stücken (Richtungsänderung mit Form- stücken)», Seite 51
	«Installation mit T-Stücken (Richtungsänderung mit Form- stücken)», Seite 51
	«Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)», Seite 52
Optiflex-Flowpress-Kunststoffrohre PB	«Installation mit T-Stücken (Richtungsänderung mit Formstücken)», Seite 52
	«Installation mit T-Stücken (Richtungsänderung mit Formstücken)», Seite 53
	«Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)», Seite 53
Optiflex-Flowpress-Kunststoffrohre PE-Xc/Al/PE-X	«Installation mit T-Stücken (Richtungsänderung mit Formstücken)», Seite 54
	«Installation mit T-Stücken (Richtungsänderung mit Formstücken)», Seite 54

Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)

Belastungswert-Tabelle: Optiflex-Profix - Kunststoffrohre PE-Xc / PE-RT Verteilsystem: Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen) Hersteller: R. Nussbaum AG, Olten 0901-5482 / 1507-6398 SVGW Zertifikat Nr.: Max. abgewickelte Länge [m] 10 15 Geschwindigkeit max. 4 m/s Wasserzähler ohne mit ohne mit ohne mit Stockwerkverteilung Apparategruppe / Belastungswert (LU) $\mathsf{d}_a \times \mathsf{s}$ $\mathsf{da} \times \mathsf{S}$ $\mathsf{d}_a \times \mathsf{s}$ $\mathsf{da} \times \mathsf{S}$ $\mathsf{da} \times \mathsf{S}$ $\mathsf{d}_a \times \mathsf{s}$ 16×3.8 16×2.2 2 16 × 2.2 16 × 2.2 16×2.2 16 × 2.2 16×2.2 16×2.2 3 16×2.2 16×2.2 20×2.8 16×2.2 20×2.8 20×2.8 4 20×2.8 16×2.2 16×2.2 20×2.8 20×2.8 20×2.8 5 20×2.8 kein Zähler 20×2.8 kein Zähler Rohr $d_a \times s$ [mm] 16×3.8 16×2.2 20×2.8 Rohr di [mm] 8.4 11.4 14.4 Armatur 1/2 " 1/2" 1/2" Geradsitz-Absperrarmatur 3/4" und Verteiler 3/4" sind im Berechnungsmodell berücksichtigt

Installation mit T-Stücken (Richtungsänderung mit Formstücken)

Belastungswert-Tabelle:	Optiflex-Prof	ix – Kunststoff	rohre PE-Xc / F	PE-RT			
Verteilsystem:	Installation r	nit T-Stücken (Richtungsände	rung mit Form	stücken)	_	
Hersteller:	R. Nussbaum	AG, Olten				— M-	'+' '+' '+
SVGW Zertifikat Nr.:	0901-5482 /	1507-6398					9 9 9
Max. abgewickelte Länge [m]		5	1	10	,	15	
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	D
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung Geschwindigkeit max. 3 m/s
1	16 × 3.8	16 × 3.8	16 × 3.8	16 × 3.8	16 × 2.2	16 × 2.2	erte m/s
2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	erkv c. 3
3	16 × 2.2	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	:kw ma
4	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	Stoc
5	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	digl
6	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	_	ategruppe / Stockwel Geschwindigkeit max.
8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	_	tegı
10	20 × 2.8	20 × 2.8	20 × 2.8	-	-	_	oara Ge
12	20 × 2.8	20 × 2.8	20 × 2.8	-	-	-	Арк
15	_	-	-	_	-	_	
Rohr da × s [mm]	16 × 3.8	16 × 2.2	20 × 2.8				
Rohr di [mm]	8.4	11.4	14.4				
Armatur	1/2 "	1/2 "	1/2 "				

Belastungswert-Tabelle:	Optiflex-Profix	– Kunststoffrohr	e PE-Xc			
Verteilsystem:	Installation mit	T-Stücken (Richt	tungsänderung m	it Formstücken)	_	1 1
Hersteller:	R. Nussbaum A	G, Olten				
SVGW Zertifikat Nr.:	0901-5482					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	
1	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	
2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	_	
3	20 × 2.8	_	_	_	-	
4	20 × 2.8	_	-	_	_	s/ı
6	_	_	_	_	-	Verteilung Geschwindigkeit max. 2 m/s
8	-	_	-	_	-	y nax.
10	_	_	_	_	-	Verteilung ndigkeit ma
15	_	_	_	_	-	ertei igke
20	_	_	_	_	-	Ve
30	_	-	_	_	-	chw
40	_	_	_	_	-	Ges
50	-	-	-	_	-	
70	-	-	-	_	-	
90	_	_	_	_	-	
120	_	_	_	_	_	
150	-	-	-	-	-	
Rohr da × s [mm]	16 × 2.2	20 × 2.8				
Rohr di [mm]	11.6	14.4				
Armatur	1/2 "	1/2 "				

Installation mit Ausstossleitung (Richtungsänderung mit Formstücken)

Belastungswert-Tabelle:	Optipress –	rostbeständige	Stahlrohre				
Verteilsystem:	Installation	mit Ausstossleit	ung (Richtun	gsänderung mit	Formstücker	1)	
Hersteller:	R. Nussbaur	n AG, Olten					Ÿ∏ ĴÎÎ
SVGW Zertifikat Nr.:	0209-4548						[++++++++++++++++++++++++++++++++++++++
Max. abgewickelte Länge [m]		5		10		15	s/w
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	
Belastungswert (LU)	da × s	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung chwindigkeit max. 4
1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	Apparategruppe. Stockwerkvertellur Geschwindigkeit max.
2	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	rate ⁄erk ligke
3	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	18 × 1	ppa ockv winc
4	15 × 1	15 × 1	15 × 1	15 × 1	18 × 1	18 × 1	Stc
5	15 × 1	kein Zähler	18 × 1	kein Zähler	18 × 1	kein Zähler]
Rohr da × s [mm]	15 × 1	18×1				1	1
Rohr di [mm]	13.0	16.0					
Armatur	1/2 "	1/2 "					
Geradsitz-Absperrarmatur ¾" u	ınd Verteiler	3⁄4" sind im Bere	chnungsmo	dell berücksich	tigt	-	-

Belastungswert-Tabelle:	Optipress – r	rostbeständige	Stahlrohre				
Verteilsystem:	Installation I	mit T-Stücken (Richtungsände	rung mit Form	stücken)	= N4	William William William
Hersteller:	R. Nussbaum	n AG, Olten			n)		'
SVGW Zertifikat Nr.:	0209-4548						0 0 0
Max. abgewickelte Länge [m]		5	1	0	1	5	
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	<u> </u>
Belastungswert (LU)	$d_a \times s$	da × s	$d_a \times S$	da × s	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung Geschwindigkeit max. 3 m/s
1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	rkverte 3 m/s
2	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	x. »
3	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	18 × 1	rategruppe / Stockwer Geschwindigkeit max.
4	15 × 1	15 × 1	15 × 1	15 × 1	18 × 1	18 × 1	Sto
5	15 × 1	15 × 1	15 × 1	18 × 1	18 × 1	18 × 1	oe /
6	15 × 1	15 × 1	18 × 1	18 × 1	18 × 1	18 × 1	rupg jwr
8	18 × 1	18 × 1	18 × 1	18 × 1	18 × 1	18 × 1	iteg esch
10	18 × 1	18 × 1	18 × 1	18 × 1	18 × 1	18 × 1	para
12	18 × 1	18 × 1	18 × 1	18 × 1	18 × 1	18 × 1	Ap
15	18 × 1	18 × 1	18 × 1	18 × 1	18 × 1	22 × 1.2	
Rohr da × s [mm]	15 × 1	18 × 1	22 × 1.2				
Rohr di [mm]	13.0	16.0	19.6				
Armatur	1/2 "	1/2 "	3/4"				

Installation mit T-Stücken (Richtungsänderung mit Formstücken)

Belastungswert-Tabelle:	Optipress – rost	beständige Stahl	rohre			
Verteilsystem:	Installation mit	T-Stücken (Richtu	ıngsänderung mi	it Formstücken)	42	1 1
Hersteller:	R. Nussbaum A	G, Olten				
SVGW Zertifikat Nr.:	0209-4548					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	da × s	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	
1	15 × 1	15 × 1	15 × 1	15 × 1	15 × 1	
2	15 × 1	15 × 1	15 × 1	18 × 1	18 × 1	
3	18 × 1	18 × 1	18 × 1	18 × 1	22 × 1.2	S
4	18 × 1	18 × 1	18 × 1	22 × 1.2	22 × 1.2	2 m/s
6	18 × 1	18 × 1	22 × 1.2	22 × 1.2	22 × 1.2	
8	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	tung t ma
10	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	Verteilleitung Geschwindigkeit max.
15	22 × 1.2	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	erte ndig
20	22 × 1.2	22 × 1.2	22 × 1.2	28 × 1.2	28 × 1.2	hwi
30	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	jesc
40	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	
50	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
70	28 × 1.2	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	
90	28 × 1.2	28 × 1.2	28 × 1.2	35 × 1.5	35 × 1.5	
120	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
150	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	35 × 1.5	
Rohr da × s [mm]	15 × 1	18 × 1	22 × 1.2	28 × 1.2	35 × 1.5	
Rohr di [mm]	13.0	16.0	19.6	25.6	32.0	
Armatur	1/2"	1/2 "	3/4"	1"	1¼"	

Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)

Belastungswert-Tabelle:	Optiflex-Prof	ix – Kunststoff	rohre PB / PE-	RT						
Verteilsystem:	Installation i	nit Ausstosslei	tung (Richtun	gsänderung mit	Rohrbogen)					
Hersteller:	R. Nussbaum	R. Nussbaum AG, Olten								
SVGW Zertifikat Nr.:	0908-5605 /	1507-6398								
Max. abgewickelte Länge [m]		5		10	1	5	s/m			
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	ng / r 4 .			
Belastungswert (LU)	da × s	da × S	$d_a \times s$	da × s	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung schwindigkeit max. 4 n			
1	16 × 3.8	16 × 3.8	16 × 3.8	16 × 3.8	16 × 3.8	16 × 2.2	gru vert eit r			
2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	rate verk digk			
3	16 × 2.2	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	Apparategn Stockwerkvel Geschwindigkeit			
4	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	Stc			
5	20 × 2.8	kein Zähler	20 × 2.8	kein Zähler	-	-				
Rohr da × s [mm]	16 × 3.8	16 × 2.2	20 × 2.8				T			
Rohr di [mm]	8.4	11.4	14.4							
Armatur	1/2 "	1/2"	1/2 "							

Installation mit T-Stücken (Richtungsänderung mit Formstücken)

1/2"

1/2 "

Belastungswert-Tabelle:	Optiflex-Profi	ix – Kunststoff	rohre PB / PE-F	RT					
Verteilsystem:	Installation n	nit T-Stücken (F	Richtungsände	rung mit Form	stücken)	-			
Hersteller:	R. Nussbaum	AG, Olten					' ' ' ' ' '	+	
SVGW Zertifikat Nr.:	0908-5605 / 1	605 / 1507-6398							
Max. abgewickelte Länge [m]	į	5	1	0	1	5			
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	<u> </u>		
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$da \times S$	ilnu		
1	16 × 3.8	16 × 3.8	16 × 3.8	16 × 3.8	16 × 2.2	16 × 2.2	kverteilung 3 m/s		
2	16 2 2	16 2 2	102.2	1622	1622	1622	1 ≥ ∞		

2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	erk x. 3
3	16 × 2.2	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	rkw
4	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	Stockwerk keit max. 3
5	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	~ .6
6	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	Apparategruppe Geschwind
8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	rateg Gesch
10	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	para
12	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	Αp
15	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	
Rohr da × s [mm]	16 × 3.8	16 × 2.2	20 × 2.8	25 × 2.7			
Rohr di [mm]	8.4	11.4	14.4	19.6			

1/2"

3/4"

Armatur

Belastungswert-Tabelle:	Optiflex-Profix	 Kunststoffrohr 	e PB			
Verteilsystem:	Installation mit	: T-Stücken (Richt	ungsänderung m	it Formstücken)		1 1
Hersteller:	R. Nussbaum A	G, Olten				
SVGW Zertifikat Nr.:	0908-5605					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	
1	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	
2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	
3	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	
4	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	\$/ι
6	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	2 m/s
8	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	-	ng nax.
10	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	-	Verteilleitung vindigkeit max
15	25 × 2.7	25 × 2.7	25 × 2.7	-	-	teill
20	25 × 2.7	25 × 2.7	-	-	-	Ver
30	_	_	_	-	-	Verteilleitung Geschwindigkeit max.
40	_	-	_	-	-	Ge
50	_	-	-	-	-	
70	_	_	_	-	-	
90	_	_	_	_	_	
120	_	_	_	_	_	
150	-	-	-	-	-	
Rohr da × s [mm]	16 × 2.2	20 × 2.8	25 × 2.7			
Rohr di [mm]	11.6	14.4	19.6			
Armatur	1/2 "	1/2 "	3/4"			

Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)

Optiflex-Flov	ptiflex-Flowpress — Kunststoffrohre PE-Xc									
Installation i	nstallation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)									
R. Nussbaum	n AG, Olten					ĭïU™				
1506-6381										
	5	•	10	1	5	m/s				
ohne	mit	ohne	mit	ohne	mit	ر و 4				
$d_a \times s$	da × s	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung Geschwindigkeit max. 4				
16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	gru vert				
16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	rate verk digk				
16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	ppa ockv wind				
16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	Stc A				
20 × 2.8	kein Zähler	20 × 2.8	kein Zähler	_	_	Ge				
16 × 2.2	20 × 2.8									
11.4	14.4									
1/2 "	1/2 "									
	Installation I R. Nussbaum 1506-6381 ohne da×s 16×2.2 16×2.2 16×2.2 20×2.8 16×2.2 11.4	Installation mit Ausstossleit R. Nussbaum AG, Olten 1506-6381 5 ohne mit da × s da × s 16 × 2.2 16 × 2.2 16 × 2.2 16 × 2.2 16 × 2.2 20 × 2.8 20 × 2.8 kein Zähler 16 × 2.2 20 × 2.8 11.4 14.4	Installation mit Ausstossleitung (Richtung R. Nussbaum AG, Olten 1506-6381	R. Nussbaum AG, Olten 1506-6381 5 10 ohne mit ohne mit da × 5 da × 5 da × 5 16 × 2.2 16 × 2.2 16 × 2.2 16 × 2.2 16 × 2.2 16 × 2.2 16 × 2.2 16 × 2.2 20 × 2.8 16 × 2.2 20 × 2.8 20 × 2.8 kein Zähler 16 × 2.2 20 × 2.8 11.4 14.4	Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen) R. Nussbaum AG, Olten 1506-6381	Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen) R. Nussbaum AG, Olten 1506-6381 5 10 15 ohne mit ohne mit ohne mit da×s da×s da×s da×s 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 16×2.2 20×2.8 20×2.8 20×2.8 20×2.8 16×2.2 20×2.8 20×2.8 20×2.8 20×2.8 20×2.8 kein Zähler 20×2.8 kein Zähler — — 16×2.2 20×2.8 kein Zähler 20×2.8 kein Zähler — —				

Belastungswert-Tabelle:	Optiflex-Flov	vpress – Kunst	stoffrohre PE-X	(c			
Verteilsystem:	Installation r	nit T-Stücken (I	Richtungsände	rung mit Form	stücken)		
Hersteller:	R. Nussbaum	AG, Olten				F ×	' ' '
SVGW Zertifikat Nr.:	1506-6381					1	9 9 9
Max. abgewickelte Länge [m]		5	1	0	·	15	
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	g _C
Belastungswert (LU)	da × s	da × s	da × s	da × s	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung Geschwindigkeit max. 3 m/s
1	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	kverte 3 m/s
2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	erk X. 3
3	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	J Š
4	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	_	Sto
5	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	_	pe / ndig
6	20 × 2.8	20 × 2.8	20 × 2.8	_	-	_	rategruppe / Stockwerl Geschwindigkeit max.
8	20 × 2.8	20 × 2.8	-	-	-	-	ateg
10	20 × 2.8	_	_	_	-	-	para
12	-	-	-	_	_	_] &
15	-	-	-	-	-	-	
Rohr da × s [mm]	16 × 2.2	20 × 2.8					
Rohr di [mm]	11.4	14.4					
Armatur	1/2 "	1/2"					

Installation mit T-Stücken (Richtungsänderung mit Formstücken)

Belastungswert-Tabelle:	Optiflex-Flowp	ress – Kunststoff	rohre PE-Xc				
Verteilsystem:	Installation mit	t T-Stücken (Richt	ungsänderung m	it Formstücken)		1 1	
Hersteller:	R. Nussbaum A	G, Olten			-		
SVGW Zertifikat Nr.:	1506-6381				1		
Max. abgewickelte Länge [m]	5	10	15	20	35		
Belastungswert (LU)	da × s	$d_a \times s$	$d_a \times s$	$d_a \times s$	da × s		
1	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2		
2	20 × 2.8	20 × 2.8	20 × 2.8	-	_		
3	-	_	_	_	_		
4	_	_	_	_	_	2 m/s	
6	_	_	_	_	_	. 2 .	
8	-	_	_	_	_	Verteilleitung Geschwindigkeit max.	
10	-	_	_	-	_	Verteilleitung ⁄indigkeit max	
15	_	_	_	_	_	rteil digk	
20	-	_	_	-	_	Ve Win	
30	-	_	_	_	_	sch	
40	_	_	_	_	_	Ğ	
50	-	_	_	-	_		
70	-	_	_	-	_		
90	-	_	_	_	_		
120	-	_	_	-	_		
150	-	-	-	_	_		
Rohr da × s [mm]	16 × 2.2	20 × 2.8					
Rohr di [mm]	11.6	14.4					
Armatur	1/2 "	1/2 "					

Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)

Belastungswert-Tabelle: Optiflex-Flowpress - Kunststoffrohre PB Verteilsystem: Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen) Hersteller: R. Nussbaum AG, Olten SVGW Zertifikat Nr.: 1509-6418 10 Geschwindigkeit max. 4 m/s Max. abgewickelte Länge [m] 15 Wasserzähler ohne mit ohne mit ohne mit Stockwerkverteilung Apparategruppe / $\mathsf{da} \times \mathsf{S}$ $\mathsf{d}_a \times \mathsf{S}$ $\mathsf{d}_a \times \mathsf{S}$ Belastungswert (LU) $\mathsf{d}_a \times \mathsf{s}$ $\mathsf{d}_a \times \mathsf{s}$ $\mathsf{da} \times \mathsf{S}$ 16×2.2 16×2.2 16×2.2 16×2.2 20×2.8 16×2.2 20×2.8 20×2.8 20×2.8 20×2.8 5 20×2.8 kein Zähler 20×2.8 kein Zähler Rohr $d_a \times s$ [mm] 16×2.2 20×2.8 Rohr di [mm] 11.4 14.4 1/2 " 1/2" Armatur Geradsitz-Absperrarmatur 3/4" und Verteiler 3/4" sind im Berechnungsmodell berücksichtigt

Installation mit T-Stücken (Richtungsänderung mit Formstücken)

Belastungswert-Tabelle:	Optiflex-Flov	vpress – Kunst	stoffrohre PB				
Verteilsystem:	Installation r	nit T-Stücken (I	Richtungsände	rung mit Form	stücken)		
Hersteller:	R. Nussbaum	AG, Olten				F M-	'+' '+' ' +
SVGW Zertifikat Nr.:	1509-6418					1-1	9 9 9
Max. abgewickelte Länge [m]		5	1	0	•	15	
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	рби
Belastungswert (LU)	$d_a \times s$	da × s	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	/ Stockwerkverteilung gkeit max. 3 m/s
1	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	kverte 3 m/s
2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	verk
3	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	t m.
4	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	, Stc Jkeij
5	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	rategruppe / Stockwer Geschwindigkeit max.
6	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	grup :hwi
8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	atec
10	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	Apparategruppe , Geschwindie
12	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7] ₹
15	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7]
Rohr da × s [mm]	16 × 2.2	20 × 2.8	25 × 2.7]		
Rohr di [mm]	11.4	14.4	19.6				
Armatur	1/2 "	1/2"	3/4"				

Belastungswert-Tabelle:	Optiflex-Flowp	ess – Kunststoffr	ohre PB			
Verteilsystem:	Installation mit	T-Stücken (Richt	ungsänderung m	it Formstücken)		
Hersteller:	R. Nussbaum A	G, Olten				
SVGW Zertifikat Nr.:	1509-6418				1	
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	da × s	$d_a \times s$	da × s	da × s	$d_a \times s$	
1	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	
2	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	
3	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	S
4	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	2 m/s
6	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	. Z
8	25 × 2.7	25 × 2.7	25 × 2.7	32 × 3.2	32 × 3.2	Verteilleitung //indigkeit max
10	25 × 2.7	25 × 2.7	25 × 2.7	32 × 3.2	32 × 3.2	eillei ykei
15	25 × 2.7	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	erte ndig
20	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	hwi i
30	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	Verteilleitung Geschwindigkeit max.
40	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	40 × 3.5	
50	32 × 3.2	32 × 3.2	32 × 3.2	40 × 3.5	40 × 3.5	
70	32 × 3.2	32 × 3.2	40 × 3.5	40 × 3.5	40 × 3.5	
90	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	
120	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	
150	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	
Rohr da × s [mm]	16 × 2.2	20 × 2.8	25 × 2.7	32 × 3.2	40 × 3.5	
Rohr di [mm]	11.6	14.4	19.6	25.6	33.0	
Armatur	1/2 "	1/2 "	3/4"	1"	1¼"	

Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)

Belastungswert-Tabelle:	Optiflex-Flowpress – Kunststoffrohre PE-Xc/Al/PE-X										
Verteilsystem:	Installation mit Ausstossleitung (Richtungsänderung mit Rohrbogen)										
Hersteller:	R. Nussbaum AG, Olten										
SVGW Zertifikat Nr.:	1507-6391										
Max. abgewickelte Länge [m]		5		10	1	15	m/s				
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	/ g 4				
Belastungswert (LU)	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung Geschwindigkeit max. 4				
1	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	gru vert				
2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	rate verk digk				
3	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	ppa ockv vinc				
4	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	Stc A				
5	20 × 2.8	kein Zähler	20 × 2.8	kein Zähler	-	_	Ge				
Rohr da × s [mm]	16 × 2.2	20 × 2.8					1				
Rohr di [mm]	11.4	14.4									
Armatur	1/2 "	1/2 "									

Belastungswert-Tabelle:	Optiflex-Flowpress — Kunststoffrohre PE-Xc/Al/PE-X									
Verteilsystem:	Installation r	nit T-Stücken (I	Richtungsände	rung mit Form	stücken)					
Hersteller:	R. Nussbaum	AG, Olten				F ×-	'+' '+' ' +			
SVGW Zertifikat Nr.:	1507-6391		1	1 1						
Max. abgewickelte Länge [m]	5		1	0	1					
Wasserzähler	ohne	mit	ohne	mit	ohne	mit	ng			
Belastungswert (LU)	da × s	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	$d_a \times s$	Apparategruppe / Stockwerkverteilung Geschwindigkeit max. 3 m/s			
1	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	kverte 3 m/s			
2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	verk			
3	16 × 2.2	16 × 2.2	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	ckv t më			
4	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	/ Stc gkei			
5	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	rategruppe / Stockwer Geschwindigkeit max.			
6	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	grup :hwi			
8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	atec			
10	20 × 2.8	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7) Opar			
12	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	ĬĞ			
15	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7				
Rohr da × s [mm]	16 × 2.2	20 × 2.8	25 × 2.7							
Rohr di [mm]	11.4	14.4	19.6							
Armatur	1/2 "	1/2 "	3/4"							

Installation mit T-Stücken (Richtungsänderung mit Formstücken)

Belastungswert-Tabelle:	Optiflex-Flowp	ess – Kunststoffr	ohre PE-Xc/Al/PE	-X		
Verteilsystem:	Installation mit	T-Stücken (Richti	ıngsänderung m	it Formstücken)		
Hersteller:	R. Nussbaum A	G, Olten			-	
SVGW Zertifikat Nr.:	1507-6391					
Max. abgewickelte Länge [m]	5	10	15	20	35	
Belastungswert (LU)	da × s	da × s	da × s	$d_a \times s$	$d_a \times s$	
1	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	16 × 2.2	
2	20 × 2.8	20 × 2.8	20 × 2.8	25 × 2.7	25 × 2.7	
3	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	
4	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	3/د
6	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	25 × 2.7	2 m/s
8	25 × 2.7	25 × 2.7	25 × 2.7	32 × 3.2	32 × 3.2	Verteilleitung Geschwindigkeit max.
10	25 × 2.7	25 × 2.7	25 × 2.7	32 × 3.2	32 × 3.2	Verteilleitung ⁄indigkeit max
15	25 × 2.7	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	teill
20	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	Ver
30	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	schv
40	32 × 3.2	32 × 3.2	32 × 3.2	32 × 3.2	40 × 3.5	Ge
50	32 × 3.2	32 × 3.2	32 × 3.2	40 × 3.5	40 × 3.5	
70	32 × 3.2	32 × 3.2	40 × 3.5	40 × 3.5	40 × 3.5	
90	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	
120	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	
150	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	40 × 3.5	
Rohr da × s [mm]	16 × 2.2	20 × 2.8	25 × 2.7	32 × 3.2	40 × 3.5	
Rohr di [mm]	11.6	14.4	19.6	25.6	33.0	
Armatur	1/2 "	1/2 "	3/4"	1"	1 1/4 "	

4 Dimensionierung von Rohrleitungssystemen für Heizungsanlagen

4.1 Grundlagen und Anforderungen

4.1.1 Begriffe, Definitionen, Einheiten

Begriff	Symbol	Definition	Einheit
Massenstrom	ṁ	Masse des Mediums das pro Zeiteinheit durch einen festgelegten Querschnitt transportiert wird.	kg/h
Nettowärmeleistung	$\mathbf{Q}_{\text{netto}}$	Wärmeleistung der Heizkörper	[kJ/s = kW]
Bruttowärmeleistung	Q _{brutto}	Summe aus Nettowärmeleistung und Zuschlag für Wärmeverluste	[kJ/s = kW]
Spezifische Wärmeka- pazität	c	Die Wärmeenergie die 1 kg eines bestimmten Mediums aufnehmen muss, damit seine Temperatur um 1 K ansteigt.	[J/(kg·K)]
Pumpenvolumenstrom	V _p	Summe der Massen-/Volumenströme aller Teilstrecken	l/s m³/h
Pumpenförderhöhe	Δp _{ges}	Förderdruck, der benötigt wird, um alle Widerstände im Heizungssystem zu überwinden und die Heizkörper mit warmem Wasser zu versorgen.	[Pa]

4.1.2 Parameter für die Berechnung von Rohrnetzen in Heizungssystemen

Die Antriebsenergie der Wasserförderung in Heizungsanlagen ist der Pumpendruck. Dieser ist abhängig vom Druckverlust im Rohrnetz, inkl. sämtlicher Einzelwiderstände von Fittings, Armaturen etc. Der Rohrdurchmesser hat folgenden Einfluss auf die Anlage:

- · Kleiner Rohrdurchmesser
 - Rohrnetz wirtschaftlich günstig
 - Höhere Betriebskosten aufgrund hoher Strömungsgeschwindigkeiten und Druckverluste
- Grosser Rohrdurchmesser
 - Höhere Anlagenkosten
 - Niedrigere Betriebskosten

4.1.3 Empfohlene Fliessgeschwindigkeiten

Leitung	Fliessgeschwindigkeit
Kellerverteilung	max. 0.8 [m/s]
Steigleitungen	max. 0.8 [m/s]
Heizkörperanbindung	max. 0.3 [m/s]

Tab. 27: Empfohlene Fliessgeschwindigkeiten

4.2 Rohrweiten bestimmen

Die Bestimmung der Rohrweiten besteht aus folgenden Schritten:

- 1. Die Nettowärmeleistung **Q**_{netto} der Heizkörper bestimmen.
- 2. Den Zuschlag für Wärmeverluste berechnen. Je nach Grösse des Rohrnetzes und Anteil ungedämmter Leitungen **5 bis 15** %.
- 3. Diesen Zuschlag zu der Nettowärmeleistung $\mathbf{Q}_{\text{netto}}$ addieren. Als Resultat erhält man die Bruttowärmeleistung $\mathbf{Q}_{\text{heutto}}$.
- 4. Die Bruttowärmeleistung **Q**_{brutto} umrechnen in Massenströme **m** gemäss der Formel, ****** «Bruttowärmeleistung in Massenstrom umrechnen», Seite 56.
- 5. Alle Teilstrecken bezeichnen und die Massenströme **m** addieren.
- 6. Den Rohrreibungswiderstand **R** [Pa/m] auswählen. Empfehlung für die Vordimensionierung: **50 bis 80 Pa/m**. Je grösser **R** gewählt wird, desto grösser wird der Pumpendruck und damit der Stromverbrauch (Betriebskosten).
- 7. Die Rohrweiten unter Berücksichtigung des Massenstromes **m** und des Rohrreibungswiderstandes **R** aus den Druckverlusttabellen auswählen. Anschliessend die Werte in die entsprechende Tabelle eintragen.
- 8. Die Fliessgeschwindigkeiten kontrollieren, «Empfohlene Fliessgeschwindigkeiten», Seite 55.

4.2.1 Bruttowärmeleistung in Massenstrom umrechnen

$$\dot{m} \, = \, \frac{Q_{brutto} \cdot 3600}{c \, \cdot \Delta T}$$

m = Massenstrom [kg/h]

 \mathbf{Q}_{brutto} = Wärmeleistung [kJ/s = kW]

c = Spezifische Wärmekapazität [kJ/(kg·K)]

 ΔT = Temperaturdifferenz [K]

4.3 Umwälzpumpe bestimmen

Für die Bestimmung der Umwälzpumpe sind folgende Parameter notwendig:

- Pumpenvolumenstrom **V**₀
- Pumpenförderhöhe Δp_{qes}

4.3.1 Pumpenvolumenstrom berechnen

Für die Berechnung des Pumpenvolumenstromes \mathbf{V}_p müssen die Massenströme $\dot{\mathbf{m}}$ sämtlicher Teilstrecken addiert werden. In der Vordimensionierung kann auf eine Umrechnung über die Dichte auf den entsprechenden Volumenstrom verzichtet werden:

 $\dot{\mathbf{m}}$ [kg/h] = $\mathbf{\ddot{V}}_{p}$ [m³/h]

4.3.2 Pumpenförderhöhe ermitteln

Für die Ermittlung der Pumpenförderhöhe Δp_{ges} ist nur der Druckverlust des ungünstigsten Stranges (meistens der längste Strang vom Heizkessel bis zum weitesten Heizkörper) massgebend. Dabei unterteilt sich der Druckverlust in Rohrreibungswiderstände und in Einzelwiderstände. Für die Bestimmung des Druckverlustes der Rohrreibungswiderstände werden die Leitungslängen der Teilstrecken benötigt. Anschliessend lassen sich aus den Druckverlusten die Einzelwiderstände **Z** ermitteln.

Der Druckverlust $\Delta \mathbf{p}$ einer Teilstrecke wird über folgende Formel ermittelt:

 $\Delta p_{Teilstrecke} = R \cdot I$

 $\Delta p_{\text{Teilstrecke}}$ = Druckverlust Teilstrecke [Pa]

R = Rohrreibungswiederstand [Pa/m]

I = Leitungslänge [m]

In der Projektphase werden Einzelwiderstände in der Regel nicht separat ermittelt. Aus Erfahrung wird mit folgenden Werten gerechnet:

$$Z = \Delta p_{Teilstrecke} \cdot 1.0 \dots 2.0$$

Z = Einzelwiderstand [Pa]

 $\Delta \mathbf{p}_{\text{Teilstrecke}}$ = Druckverlust Teilstrecke [Pa]

Spezielle Einzelwiderstände **Z** wie Heizkessel, Plattenwärmetauscher, Regulierventile etc. müssen zusätzlich eingerechnet werden.

Für die Bestimmung der Pumpenförderhöhe Δp_{ges} werden die Druckverluste der Teilstrecken inklusive der Einzelwiderstände addiert. Die Pumpenförderhöhe Δp_{ges} wird in der allgemeinen Berechnung über folgende Formel ermittelt:

$$\Delta p_{ges} = \sum \Delta p_{Teilstrecke} + \sum Z$$

 $\Delta \mathbf{p}_{\text{ges}}$ = Pumpenförderhöhe [Pa] $\Delta \mathbf{p}_{\text{Teilstrecke}}$ = Druckverlust Teilstrecke [Pa]

Z = Einzelwiderstand [Pa]

4.4 Druckverlusttabellen Optipress-Therm-Rohre aus Stahl verzinkt

Ablesebeispiel: Aus der Tabelle für Wasser +40 °C zur Rohrdimension 22 mm und Druckabfall von R = 50 Pa/m werden abgelesen:

• **m** Wasser-Massenstrom: 238 kg/h

• v Fliessgeschwindigkeit des Wassers: 0.23 m/s

• **P**_{dyn} Dynamischer Druck: 26.9 Pa

4.4.1 Medium: Wasser 40 °C

Dichte: 992 kg/m³
Viskosität: 0.0007 Pa·s
Oberflächenrauigkeit: 0.0015 mm

d _a		15			18			22		28		
DN		12			15			20			25	
R	ṁ	v	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	52	0.12	6.7	93	0.14	9.1	160	0.16	12.2	340	0.19	18.1
30	58	0.13	8.3	103	0.15	11.2	178	0.17	15.0	377	0.21	22.3
35	63	0.14	9.9	112	0.16	13.4	194	0.19	17.9	412	0.23	26.6
40	68	0.15	11.5	121	0.18	15.6	210	0.20	20.8	445	0.25	31.0
45	72	0.16	13.2	129	0.19	17.9	224	0.22	23.8	476	0.27	35.4
50	77	0.17	14.8	137	0.20	20.1	238	0.23	26.9	505	0.28	40.0
55	81	0.18	16.6	145	0.21	22.5	251	0.25	30.0	534	0.30	44.6
60	85	0.19	18.3	153	0.22	24.8	264	0.26	33.1	561	0.31	49.2
65	89	0.20	20.0	160	0.23	27.2	277	0.27	36.3	587	0.33	53.9
70	93	0.21	21.8	167	0.24	29.6	289	0.28	39.5	612	0.34	58.7
75	97	0.22	23.6	173	0.25	32.0	300	0.29	42.7	637	0.36	63.5
80	101	0.23	25.4	180	0.26	34.5	312	0.30	46.0	661	0.37	68.4
85	104	0.23	27.2	186	0.27	36.9	322	0.32	49.3	684	0.38	73.3
90	108	0.24	29.1	192	0.28	39.4	333	0.33	52.6	707	0.40	78.2
95	111	0.25	30.9	198	0.29	41.9	344	0.34	56.0	729	0.41	83.2
100	114	0.26	32.8	204	0.30	44.5	354	0.35	59.4	751	0.42	88.2
110	121	0.27	36.6	216	0.32	49.6	374	0.37	66.2	793	0.45	98.4
120	127	0.29	40.4	227	0.33	54.8	393	0.38	73.1	833	0.47	108.7
130	133	0.30	44.2	237	0.35	60.0	411	0.40	80.2	872	0.49	119.1
140	139	0.31	48.2	248	0.36	65.3	429	0.42	87.2	910	0.51	129.6
150	144	0.32	52.1	258	0.38	70.7	446	0.44	94.4	947	0.53	140.2
160	150	0.34	56.1	267	0.39	76.1	463	0.45	101.6	982	0.55	151.0
170	155	0.35	60.1	277	0.41	81.6	479	0.47	108.9	1017	0.57	161.8
180	160	0.36	64.2	286	0.42	87.1	495	0.48	116.3	1051	0.59	172.7
190	165	0.37	68.3	295	0.43	92.6	511	0.50	123.7	1084	0.61	183.7
200	170	0.38	72.4	304	0.44	98.2	526	0.51	131.1	1116	0.63	194.8
220	180	0.40	80.7	321	0.47	109.5	555	0.54	146.2	1178	0.66	217.3
240	189	0.42	89.1	337	0.49	121.0	584	0.57	161.5	1238	0.70	240.0
260	198	0.44	97.7	353	0.52	132.5	611	0.60	177.0	1296	0.73	263.0
280	206	0.46	106.3	368	0.54	144.3	637	0.62	192.6	1352	0.76	286.2

d _a		15		18			22			28		
DN		12			15			20			25	
R	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
300	214	0.48	115.0	383	0.56	156.1	663	0.65	208.4	1407	0.79	309.7
350	234	0.53	137.2	418	0.61	186.2	724	0.71	248.6	1536	0.86	369.3
400	253	0.57	159.8	451	0.66	216.9	781	0.76	289.6	1658	0.93	430.2
450	270	0.61	182.9	483	0.71	248.1	836	0.82	331.3	1773	1.00	492.2
500	287	0.64	206.3	512	0.75	279.8	888	0.87	373.7	1884	1.06	555.2
550	303	0.68	230.0	541	0.79	312.1	937	0.92	416.7	1989	1.12	619.1
600	319	0.72	254.0	569	0.83	344.7	985	0.96	460.3	2090	1.17	683.8
650	333	0.75	278.4	595	0.87	377.7	1031	1.01	504.3	2188	1.23	749.3
700	348	0.78	303.0	621	0.91	411.1	1076	1.05	548.9	2283	1.28	815.6
750	362	0.81	327.8	646	0.95	444.8	1119	1.09	594.0	2375	1.33	882.5
800	375	0.84	352.9	670	0.98	478.9	1161	1.14	639.4	2464	1.38	950.0
850	389	0.87	378.3	694	1.02	513.2	1202	1.18	685.3	2551	1.43	1018.2
900	402	0.90	403.8	717	1.05	547.9	1242	1.21	731.6	2635	1.48	1086.9
950	414	0.93	429.5	740	1.08	582.8	1281	1.25	778.2	2718	1.53	1156.2
1000	426	0.96	455.5	762	1.12	618.0	1319	1.29	825.2	2799	1.57	1226.0
1100	450	1.01	507.9	804	1.18	689.1	1393	1.36	920.1	3082	1.73	1486
1200	473	1.06	561.0	845	1.24	761.1	1464	1.43	1016.3	3219	1.81	1622
1300	495	1.11	614.7	885	1.30	834.0	1532	1.50	1113.7	3350	1.88	1757
1400	517	1.16	669.0	923	1.35	907.7	1599	1.56	1212.1	3477	1.95	1892
1500	538	1.21	723.9	960	1.41	982.2	1663	1.63	1311.6	3599	2.02	2027
1600	558	1.25	779.3	996	1.46	1057.4	1726	1.69	1412.0	3717	2.09	2162
1700	578	1.30	835.3	1031	1.51	1133.3	1786	1.75	1513.3	3831	2.15	2297
1800	597	1.34	891.6	1065	1.56	1209.8	1846	1.80	1615.4	3942	2.21	2432
1900	615	1.38	948.5	1099	1.61	1286.9	1904	1.86	1718.4	4050	2.28	2568
2000	634	1.42	1005.7	1132	1.66	1364.6	1960	1.92	1822.1	4156	2.33	2703
2100	652	1.46	1063.4	1164	1.71	1442.8	2016	1.97	1926.6	4258	2.39	2838
2200	669	1.50	1121.5	1195	1.75	1521.6	2070	2.02	2031.8	4359	2.45	2973
2300	686	1.54	1179.9	1226	1.80	1600.9	2123	2.08	2137.7	4456	2.50	3108
2400	703	1.58	1238.7	1256	1.84	1680.7	2175	2.13	2244.2	4552	2.56	3243
2500	720	1.62	1297.9	1285	1.88	1760.9	2227	2.18	2351.4	4646	2.61	3378

Tab. 28: Druckverlusttabelle Optipress-Therm-Rohre aus Stahl verzinkt bei Medium Wasser 40 °C, DN 12 ... 25

Dichte: 992 kg/m³
Viskosität: 0.0007 Pa·s
Oberflächenrauigkeit: 0.0015 mm

d _a		35			42			54		64		
DN		32			40			50			60	
R	ṁ	V	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	656	0.23	25.6	1128	0.26	34.0	2341	0.32	50.0	3582.10	0.35	62.49
30	728	0.25	31.5	1252	0.29	41.9	2598	0.35	61.5	3975.43	0.39	76.96
35	795	0.28	37.6	1367	0.32	50.0	2838	0.38	73.4	4341.49	0.43	91.79
40	858	0.30	43.8	1476	0.34	58.2	3063	0.42	85.5	4685.73	0.46	106.92
45	918	0.32	50.1	1578	0.37	66.6	3276	0.44	97.8	5011.96	0.50	122.33
50	975	0.34	56.5	1676	0.39	75.1	3479	0.47	110.3	5322.98	0.53	137.98
55	1029	0.36	63.0	1770	0.41	83.8	3674	0.50	123.0	5620.92	0.56	153.86
60	1082	0.37	69.5	1860	0.43	92.5	3861	0.52	135.9	5907.46	0.59	169.95
65	1132	0.39	76.2	1948	0.45	101.4	4042	0.55	148.9	6183.94	0.61	186.23
70	1181	0.41	82.9	2032	0.47	110.3	4217	0.57	162.0	6451.43	0.64	202.68
75	1229	0.43	89.7	2113	0.49	119.4	4386	0.59	175.3	6710.86	0.66	219.31
80	1275	0.44	96.6	2193	0.51	128.5	4551	0.62	188.8	6962.97	0.69	236.10
85	1320	0.46	103.5	2270	0.53	137.8	4712	0.64	202.3	7208.41	0.71	253.04
90	1364	0.47	110.5	2346	0.54	147.0	4868	0.66	216.0	7447.74	0.74	270.12
95	1406	0.49	117.6	2419	0.56	156.4	5021	0.68	229.7	7681.43	0.76	287.34
100	1448	0.50	124.7	2491	0.58	165.9	5170	0.70	243.6	7909.91	0.78	304.69
110	1529	0.53	139.0	2631	0.61	185.0	5460	0.74	271.6	8352.66	0.83	339.75
120	1607	0.56	153.6	2765	0.64	204.3	5738	0.78	300.0	8778.45	0.87	375.27
130	1683	0.58	168.3	2894	0.67	223.9	6006	0.81	328.8	9189.29	0.91	411.22
140	1755	0.61	183.1	3019	0.70	243.6	6266	0.85	357.8	9586.79	0.95	447.56
150	1826	0.63	198.2	3141	0.73	263.6	6518	0.88	387.2	9972.30	0.99	484.28
160	1894	0.66	213.3	3259	0.76	283.8	6763	0.92	416.8	10346.93	1.03	521.35
170	1961	0.68	228.6	3373	0.78	304.2	7002	0.95	446.7	10711.66	1.06	558.76
180	2026	0.70	244.1	3485	0.81	324.7	7234	0.98	476.9	11067.30	1.10	596.48
190	2090	0.72	259.6	3595	0.83	345.4	7461	1.01	507.3	11804	1.17	679
200	2152	0.75	275.3	3702	0.86	366.3	7683	1.04	537.9	12111	1.20	714
220	2273	0.79	307.0	3909	0.91	408.4	8427	1.14	647	12702	1.26	786
240	2388	0.83	339.1	4108	0.95	451.1	8801	1.19	706	13267	1.31	857
260 280	2500	0.87	371.6	4301	1.00	494.3	9161	1.24	765	13809	1.37	929
300	2608	0.90 0.94	404.4 437.6	4487 4887	1.04 1.13	538.0	9506 9840	1.29 1.33	824 882	14330 14833	1.42 1.47	1000 1071
350	2713 2963	1.03	521.9	5278	1.13	638 745	10629	1.44	1029	16021	1.59	1250
400	3198	1.11	607.9	5643	1.31	851	11362	1.54	1176	17128	1.70	1429
450	3421	1.18	695.5	5985	1.39	957	12052	1.63	1324	18167	1.80	1607
500	3633	1.26	784.5	6309	1.46	1064	12703	1.72	1471	19149	1.90	1786
550	3994	1.38	948	6617	1.54	1170	13324	1.81	1618	20084	1.99	1964
600	4172	1.44	1034	6911	1.60	1277	13916	1.89	1765	20977	2.08	2143
650	4342	1.50	1121	7193	1.67	1383	14484	1.96	1912	21833	2.16	2321
700	4506	1.56	1207	7465	1.73	1489	15031	2.04	2059	22658	2.25	2500
700	4500	1.50	1207	7-05	1.75	1707	15051	2.07	2000	22000	2.23	2500

d _a		35		42			54			64		
DN		32			40			50			60	
R	ṁ	V	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
750	4664	1.61	1293	7727	1.79	1596	15559	2.11	2206	23453	2.32	2679
800	4817	1.67	1379	7980	1.85	1702	16069	2.18	2353	24222	2.40	2857
850	4965	1.72	1466	8226	1.91	1809	16563	2.25	2500	24968	2.47	3036
900	5109	1.77	1552	8464	1.96	1915	17044	2.31	2647	25691	2.55	3214
950	5249	1.82	1638	8696	2.02	2021	17511	2.37	2794	26395	2.62	3393
1000	5386	1.86	1724	8922	2.07	2128	17965	2.44	2941	27081	2.68	3571
1100	5649	1.96	1897	9358	2.17	2340	18842	2.55	3235	28403	2.81	3929
1200	5900	2.04	2069	9774	2.27	2553	19680	2.67	3529	29666	2.94	4286
1300	6141	2.13	2241	10173	2.36	2766	20484	2.78	3824	30877	3.06	4643
1400	6372	2.21	2414	10557	2.45	2979	21257	2.88	4118	32043	3.18	5000
1500	6596	2.28	2586	10927	2.54	3191	22003	2.98	4412	33167	3.29	5357
1600	6812	2.36	2759	11286	2.62	3404	22725	3.08	4706	34255	3.39	5714
1700	7022	2.43	2931	11633	2.70	3617	23424	3.18	5000	35309	3.50	6071
1800	7226	2.50	3103	11970	2.78	3830	24103	3.27	5294	36333	3.60	6429
1900	7424	2.57	3276	12298	2.85	4043	24764	3.36	5588	37329	3.70	6786
2000	7616	2.64	3448	12618	2.93	4255	25407	3.44	5882	38298	3.79	7143
2100	7805	2.70	3621	12929	3.00	4468	26034	3.53	6176	39244	3.89	7500
2200	7988	2.77	3793	13234	3.07	4681	26647	3.61	6471	40168	3.98	7857
2300	8168	2.83	3966	13531	3.14	4894	27246	3.69	6765	41071	4.07	8214
2400	8343	2.89	4138	13822	3.21	5106	27832	3.77	7059	41954	4.16	8571
2500	8515	2.95	4310	14107	3.27	5319	28406	3.85	7353	42819	4.24	8929

Tab. 29: Druckverlusttabelle Optipress-Therm-Rohre aus Stahl verzinkt bei Medium Wasser 40 °C, DN 32 ... 60

Dichte: 992 kg/m³
Viskosität: 0.0007 Pa·s
Oberflächenrauigkeit: 0.0015 mm

d _a		76.1			88.9		108			
DN		65			80			100		
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	
[Pa/m]		[m/s]	[Pa]		[m/s]	[Pa]		[m/s]	[Pa]	
25	[kg/h]		81.2	[kg/h]	0.45		[kg/h]			
25 30	5898 6545	0.40 0.45	100.1	9190 10200	0.45	102.60 126.37	15942 17692	0.53 0.58	137.10 168.86	
35	7148	0.49	119.3	11139	0.55	150.71	19321	0.58	201.39	
40	7715	0.49	139.0	12022	0.59	175.56	20853	0.69	234.60	
45	8252	0.53	159.0	12022	0.59	200.86	22305	0.09	268.40	
50	8764	0.60	179.4	13657	0.68	226.56	23689	0.74	302.75	
55	9255	0.64	200.0	14421	0.71	252.63	25015	0.78	337.59	
60	9727	0.67	220.9	15156	0.75	279.05	26290	0.82	372.88	
65	10182	0.70	242.1	15156	0.79	305.78	27521	0.87	408.60	
70	10622	0.73	263.5	16552	0.79	332.80	28711	0.95	444.71	
75	11049	0.76	285.1	17218	0.85	360.11	29866	0.98	481.20	
80	11464	0.79	307.0	17864	0.88	387.67	30988	1.02	518.03	
85	11869	0.73	329.0	18494	0.92	415.48	32080	1.06	555.20	
90	12263	0.84	351.2	19108	0.95	443.53	33145	1.09	592.68	
95	12647	0.87	373.6	19708	0.98	471.80	34185	1.13	630.45	
100	13024	0.89	396.1	20294	1.00	500.29	35202	1.16	668.52	
110	13752	0.94	441.7	21430	1.06	557.86	39604	1.31	846	
120	14454	0.99	487.9	22522	1.11	616.19	41365	1.36	923	
130	15130	1.04	534.6	23576	1.17	675.21	43054	1.42	1000	
140	15784	1.08	581.9	24596	1.22	734.89	44679	1.47	1077	
150	16419	1.13	629.6	25585	1.27	795.18	46247	1.53	1154	
160	17036	1.17	677.8	27835	1.38	941	47764	1.58	1231	
170	17637	1.21	726.4	28692	1.42	1000	49234	1.62	1308	
180	18222	1.25	775.5	29524	1.46	1059	50661	1.67	1385	
190	19683	1.35	905	30333	1.50	1118	52049	1.72	1462	
200	20194	1.39	952	31121	1.54	1176	53401	1.76	1538	
220	21179	1.45	1048	32640	1.62	1294	56008	1.85	1692	
240	22121	1.52	1143	34091	1.69	1412	58498	1.93	1846	
260	23025	1.58	1238	35483	1.76	1529	60887	2.01	2000	
280	23894	1.64	1333	36822	1.82	1647	63185	2.08	2154	
300	24732	1.70	1429	38115	1.89	1765	65403	2.16	2308	
350	26714	1.83	1667	41169	2.04	2059	70643	2.33	2692	
400	28558	1.96	1905	44011	2.18	2353	75521	2.49	3077	
450	30291	2.08	2143	46681	2.31	2647	80102	2.64	3462	
500	31929	2.19	2381	49206	2.44	2941	84435	2.78	3846	
550	33488	2.30	2619	51608	2.55	3235	88556	2.92	4231	
600	34977	2.40	2857	53903	2.67	3529	92494	3.05	4615	
650	36405	2.50	3095	56104	2.78	3824	96271	3.18	5000	
700	37779	2.59	3333	58221	2.88	4118	99905	3.29	5385	

d _a		76.1			88.9		108			
DN		65			80			100		
R	ṁ	V	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}	
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	
750	39105	2.68	3571	60265	2.98	4412	103411	3.41	5769	
800	40388	2.77	3810	62241	3.08	4706	106803	3.52	6154	
850	41631	2.86	4048	64157	3.18	5000	110090	3.63	6538	
900	42838	2.94	4286	66017	3.27	5294	113282	3.74	6923	
950	44011	3.02	4524	67826	3.36	5588	116386	3.84	7308	
1000	45155	3.10	4762	69588	3.44	5882	119409	3.94	7692	
1100	47359	3.25	5238	72984	3.61	6471	125237	4.13	8462	
1200	49465	3.39	5714	76230	3.77	7059	130806	4.31	9231	
1300	51484	3.53	6190	79342	3.93	7647	136147	4.49	10000	
1400	53428	3.67	6667	82338	4.07	8235	141287	4.66	10769	
1500	55303	3.79	7143	85227	4.22	8824	146246	4.82	11538	
1600	57117	3.92	7619	88023	4.36	9412	151042	4.98	12308	
1700	58875	4.04	8095	90732	4.49	10000	155691	5.13	13077	
1800	60582	4.16	8571	93362	4.62	10588	160204	5.28	13846	
1900	62242	4.27	9048	95920	4.75	11176	164594	5.43	14615	
2000	63859	4.38	9524	98412	4.87	11765	168870	5.57	15385	
2100	65436	4.49	10000	100842	4.99	12353	173040	5.71	16154	
2200	66975	4.60	10476	103216	5.11	12941	177113	5.84	16923	
2300	68481	4.70	10952	105535	5.22	13529	181093	5.97	17692	
2400	69954	4.80	11429	107805	5.34	14118	184988	6.10	18462	
2500	71396	4.90	11905	110028	5.45	14706	188803	6.23	19231	

Tab. 30: Druckverlusttabelle Optipress-Therm-Rohre aus Stahl verzinkt bei Medium Wasser 40 °C, DN 65 ... 100

4.4.2 Medium: Wasser 60 °C

Dichte: 983 kg/m³
Viskosität: 0.0005 Pa·s
Oberflächenrauigkeit: 0.0015 mm

d _a		15		18			22			28		
DN		12			15			20			25	
R	ṁ	v	P _{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	54	0.12	7.4	97	0.14	10.0	167	0.17	13.4	355	0.20	19.9
30	60	0.14	9.1	107	0.16	12.4	186	0.18	16.5	394	0.22	24.5
35	66	0.15	10.9	117	0.17	14.7	203	0.20	19.7	430	0.24	29.2
40	71	0.16	12.6	126	0.19	17.2	219	0.22	22.9	464	0.26	34.0
45	76	0.17	14.5	135	0.20	19.6	234	0.23	26.2	497	0.28	38.9
50	80	0.18	16.3	143	0.21	22.1	249	0.25	29.6	527	0.30	43.9
55	85	0.19	18.2	152	0.22	24.7	262	0.26	33.0	557	0.32	49.0
60	89	0.20	20.1	159	0.24	27.3	276	0.27	36.4	585	0.33	54.1
65	93	0.21	22.0	167	0.25	29.9	289	0.28	39.9	613	0.35	59.3
70	97	0.22	24.0	174	0.26	32.5	301	0.30	43.4	639	0.36	64.5
75	101	0.23	25.9	181	0.27	35.2	313	0.31	47.0	665	0.38	69.8
80	105	0.24	27.9	188	0.28	37.9	325	0.32	50.6	690	0.39	75.2
85	109	0.25	29.9	194	0.29	40.6	337	0.33	54.2	714	0.40	80.6
90	112	0.25	32.0	201	0.30	43.4	348	0.34	57.9	738	0.42	86.0
95	116	0.26	34.0	207	0.31	46.1	359	0.35	61.6	761	0.43	91.5
100	119	0.27	36.0	213	0.32	48.9	369	0.36	65.3	784	0.44	97.0
110	126	0.29	40.2	225	0.33	54.5	390	0.38	72.8	828	0.47	108.2
120	133	0.30	44.4	237	0.35	60.2	410	0.40	80.4	870	0.49	119.5
130	139	0.31	48.6	248	0.37	66.0	429	0.42	88.1	911	0.52	130.9
140	145	0.33	52.9	258	0.38	71.8	448	0.44	95.9	950	0.54	142.5
150	151	0.34	57.3	269	0.40	77.7	466	0.46	103.8	988	0.56	154.2
160	156	0.35	61.7	279	0.41	83.7	483	0.48	111.7	1025	0.58	166.0
170	162	0.37	66.1	289	0.43	89.7	500	0.49	119.7	1061	0.60	177.9
180	167	0.38	70.6	298	0.44	95.7	517	0.51	127.8	1097	0.62	189.9
190	172	0.39	75.1	308	0.46	101.8	533	0.53	136.0	1131	0.64	202.0
200	177	0.40	79.6	317	0.47	108.0	549	0.54	144.2	1165	0.66	214.2
220	187	0.42	88.7	335	0.49	120.4	580	0.57	160.8	1230	0.70	238.9
240	197	0.45	98.0	352	0.52	133.0	609	0.60	177.6	1293	0.73	263.8
260	206	0.47	107.4	368	0.54	145.7	638	0.63	194.6	1353	0.77	289.1
280	215	0.49	116.9	384	0.57	158.6	665	0.66	211.8	1412	0.80	314.7
300	224	0.51	126.5	399	0.59	171.6	692	0.68	229.2	1468	0.83	340.5
350	244	0.55	150.9	436	0.65	204.7	756	0.75	273.3	1604	0.91	406.1
400	264	0.60	175.7	471	0.70	238.4	816	0.80	318.4	1731	0.98	473.0
450	282	0.64	201.1	504	0.74	272.8	872	0.86	364.2	1851	1.05	541.2
500	300	0.68	226.8	535	0.79	307.7	927	0.91	410.9	1966	1.11	610.4
550	316	0.72	252.9	565	0.84	343.1	978	0.97	458.1	2076	1.18	680.7
600	332	0.75	279.3	594	0.88	379.0	1028	1.01	506.0	2182	1.24	751.9
650	348	0.79	306.1	621	0.92	415.3	1076	1.06	554.5	2284	1.29	823.9

d _a		15			18			22		28			
DN		12			15			20			25		
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	
700	363	0.82	333.1	648	0.96	452.0	1123	1.11	603.5	2383	1.35	896.7	
750	378	0.86	360.5	674	1.00	489.1	1168	1.15	653.0	2479	1.41	970.3	
800	392	0.89	388.0	700	1.03	526.5	1212	1.20	703.0	2572	1.46	1044.5	
850	406	0.92	415.9	724	1.07	564.3	1255	1.24	753.5	2662	1.51	1119.5	
900	419	0.95	444.0	748	1.11	602.3	1296	1.28	804.3	2751	1.56	1195.0	
950	432	0.98	472.3	772	1.14	640.7	1337	1.32	855.6	2837	1.61	1271.2	
1000	445	1.01	500.8	795	1.18	679.4	1377	1.36	907.2	2921	1.66	1348.0	
1100	470	1.07	558.4	839	1.24	757.6	1454	1.43	1011.7	3068	1.74	1486	
1200	494	1.12	616.8	882	1.30	836.8	1528	1.51	1117.4	3204	1.82	1622	
1300	517	1.17	675.9	923	1.37	917.0	1600	1.58	1224.5	3335	1.89	1757	
1400	540	1.22	735.6	963	1.42	998.0	1669	1.65	1332.7	3461	1.96	1892	
1500	561	1.27	795.9	1002	1.48	1079.9	1736	1.71	1442.0	3583	2.03	2027	
1600	582	1.32	856.9	1040	1.54	1162.6	1801	1.78	1552.4	3700	2.10	2162	
1700	603	1.37	918.3	1076	1.59	1246.0	1865	1.84	1663.8	3814	2.16	2297	
1800	623	1.41	980.3	1112	1.65	1330.1	1926	1.90	1776.1	3925	2.22	2432	
1900	642	1.46	1042.8	1147	1.70	1414.9	1987	1.96	1889.3	4032	2.29	2568	
2000	662	1.50	1105.8	1181	1.75	1500.3	2046	2.02	2003.4	4137	2.34	2703	
2100	680	1.54	1169.2	1215	1.80	1586.3	2104	2.08	2118.2	4239	2.40	2838	
2200	699	1.58	1233.0	1247	1.84	1672.9	2161	2.13	2233.9	4339	2.46	2973	
2300	717	1.62	1297.3	1279	1.89	1760.1	2216	2.19	2350.3	4436	2.51	3108	
2400	734	1.66	1362.0	1311	1.94	1847.9	2271	2.24	2467.5	4532	2.57	3243	
2500	751	1.70	1427.0	1342	1.98	1936.1	2324	2.29	2585.3	4625	2.62	3378	

Tab. 31: Druckverlusttabelle Optipress-Therm-Rohre aus Stahl verzinkt bei Medium Wasser 60 °C, DN 12 ... 25

Dichte: 983 kg/m³
Viskosität: 0.0005 Pa·s
Oberflächenrauigkeit: 0.0015 mm

d _a		35			42			54			64	
DN		32			40			50			60	
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	685	0.24	28.1	1178	0.28	37.4	2444	0.33	54.9	3738.96	0.37	68.70
30	760	0.27	34.6	1307	0.31	46.1	2712	0.37	67.7	4149.52	0.41	84.62
35	830	0.29	41.3	1427	0.33	54.9	2962	0.41	80.7	4531.61	0.45	100.92
40	895	0.31	48.1	1540	0.36	64.0	3197	0.44	94.0	4890.92	0.49	117.56
45	958	0.33	55.0	1648	0.39	73.2	3419	0.47	107.5	5231.44	0.52	134.50
50	1017	0.36	62.1	1750	0.41	82.6	3632	0.50	121.3	5556.08	0.56	151.71
55	1074	0.38	69.2	1848	0.43	92.1	3835	0.52	135.2	5867.07	0.59	169.16
60	1129	0.39	76.5	1942	0.45	101.7	4030	0.55	149.4	6166.16	0.62	186.85
65	1182	0.41	83.8	2033	0.48	111.5	4219	0.58	163.7	6454.74	0.65	204.75
70	1233	0.43	91.2	2121	0.50	121.3	4402	0.60	178.2	6733.95	0.67	222.85
75	1283	0.45	98.7	2206	0.52	131.3	4579	0.63	192.8	7004.74	0.70	241.13
80	1331	0.46	106.2	2289	0.54	141.3	4751	0.65	207.5	7267.89	0.73	259.59
85	1378	0.48	113.8	2370	0.56	151.5	4918	0.67	222.4	7524.08	0.75	278.21
90	1423	0.50	121.5	2448	0.57	161.7	5081	0.70	237.4	7773.89	0.78	296.99
95	1468	0.51	129.3	2525	0.59	172.0	5241	0.72	252.6	8017.81	0.80	315.92
100	1512	0.53	137.1	2600	0.61	182.4	5397	0.74	267.8	8256.30	0.83	334.99
110	1596	0.56	152.9	2746	0.64	203.4	5699	0.78	298.6	8718.43	0.87	373.55
120	1678	0.59	168.8	2886	0.68	224.6	5989	0.82	329.9	9162.87	0.92	412.60
130	1756	0.61	185.0	3021	0.71	246.1	6269	0.86	361.5	9591.70	0.96	452.13
140	1832	0.64	201.4	3151	0.74	267.9	6541	0.89	393.4	10006.61	1.00	492.09
150	1906	0.67	217.9	3278	0.77	289.9	6804	0.93	425.7	10409.00	1.04	532.46
160	1977	0.69	234.6	3401	0.80	312.1	7059	0.97	458.3	10800.04	1.08	573.22
170	2047	0.72	251.4	3521	0.82	334.4	7308	1.00	491.2	11180.74	1.12	614.34
180	2115	0.74	268.4	3638	0.85	357.0	7551	1.03	524.3	11551.95	1.16	655.81
190	2181	0.76	285.5	3752	0.88	379.8	7788	1.07	557.7	11751	1.17	679
200	2246	0.78	302.7	3864	0.91	402.7	8019	1.10	591.4	12056	1.21	714
220	2372	0.83	337.5	4080	0.96	449.0	8388	1.15	647	12644	1.26	786
240	2493	0.87	372.8	4288	1.00	496.0	8761	1.20	706	13207	1.32	857
260	2610	0.91	408.5	4489	1.05	543.5	9119	1.25	765	13746	1.37	929
280	2723 2832	0.95	444.6	4683	1.10	591.5	9463	1.29	824	14265	1.43	1000
300 350	3093	0.99 1.08	481.1 573.8	4865 5254	1.14 1.23	638 745	9795 10580	1.34 1.45	882 1029	14765 15949	1.48 1.59	1071 1250
400	3338	1.17	668.4	5617	1.32	851	11311	1.55	1176	17050	1.70	1429
450	3570	1.17	764.7	5958	1.40	957	11997	1.64	1324	18084	1.81	1607
500	3792	1.32	862.6	6280	1.47	1064	12646	1.73	1471	19062	1.91	1786
550	3976	1.39	948	6587	1.54	1170	13263	1.73	1618	19993	2.00	1964
600	4153	1.45	1034	6880	1.61	1277	13853	1.89	1765	20882	2.09	2143
650	4322	1.51	1121	7161	1.68	1383	14418	1.97	1912	21734	2.17	2321
700	4485	1.57	1207	7431	1.74	1489	14963	2.05	2059	22555	2.26	2500
700	4-05	1.57	1207	7-51	1.7	1-05	1-505	2.05	2000	22333	2.20	2500

d _a		35			42			54		64			
DN		32			40			50			60		
R	ṁ	V	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}	
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	
750	4643	1.62	1293	7692	1.80	1596	15488	2.12	2206	23346	2.33	2679	
800	4795	1.68	1379	7944	1.86	1702	15996	2.19	2353	24112	2.41	2857	
850	4943	1.73	1466	8188	1.92	1809	16488	2.26	2500	24854	2.49	3036	
900	5086	1.78	1552	8426	1.97	1915	16966	2.32	2647	25575	2.56	3214	
950	5225	1.83	1638	8657	2.03	2021	17431	2.38	2794	26275	2.63	3393	
1000	5361	1.87	1724	8882	2.08	2128	17884	2.45	2941	26958	2.70	3571	
1100	5623	1.96	1897	9315	2.18	2340	18757	2.57	3235	28274	2.83	3929	
1200	5873	2.05	2069	9729	2.28	2553	19591	2.68	3529	29531	2.95	4286	
1300	6113	2.14	2241	10126	2.37	2766	20391	2.79	3824	30737	3.07	4643	
1400	6343	2.22	2414	10509	2.46	2979	21160	2.89	4118	31897	3.19	5000	
1500	6566	2.29	2586	10878	2.55	3191	21903	3.00	4412	33017	3.30	5357	
1600	6781	2.37	2759	11234	2.63	3404	22621	3.09	4706	34099	3.41	5714	
1700	6990	2.44	2931	11580	2.71	3617	23318	3.19	5000	35149	3.51	6071	
1800	7193	2.51	3103	11916	2.79	3830	23994	3.28	5294	36168	3.62	6429	
1900	7390	2.58	3276	12242	2.87	4043	24651	3.37	5588	37159	3.72	6786	
2000	7582	2.65	3448	12560	2.94	4255	25291	3.46	5882	38124	3.81	7143	
2100	7769	2.71	3621	12871	3.02	4468	25916	3.54	6176	39066	3.91	7500	
2200	7952	2.78	3793	13173	3.09	4681	26526	3.63	6471	39985	4.00	7857	
2300	8131	2.84	3966	13469	3.16	4894	27122	3.71	6765	40884	4.09	8214	
2400	8305	2.90	4138	13759	3.22	5106	27705	3.79	7059	41763	4.18	8571	
2500	8477	2.96	4310	14043	3.29	5319	28277	3.87	7353	42624	4.26	8929	

Tab. 32: Druckverlusttabelle Optipress-Therm-Rohre aus Stahl verzinkt bei Medium Wasser 60 °C, DN 32 ... 60

Dichte: 983 kg/m³
Viskosität: 0.0005 Pa·s
Oberflächenrauigkeit: 0.0015 mm

\mathbf{d}_{a}		76.1			88.9			108	
DN		65			80			100	
R	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}
[Pa/m]		[m/s]	[Pa]		[m/s]	[Pa]		[m/s]	[Pa]
25	[kg/h] 6156	0.43	89.3	[kg/h] 9593	0.48	112.81	[kg/h] 16640	0.55	150.74
30	6832	0.43	110.0	10646	0.48	138.94	18467	0.55	185.66
35	7461	0.52	131.2	11626	0.58	165.71	20167	0.67	221.43
40	8053	0.56	151.2	12548	0.63	193.03	21766	0.72	257.93
45	8613	0.60	174.9	13422	0.67	220.84	23282	0.72	295.10
50	9148	0.63	197.2	14255	0.71	249.10	24726	0.82	332.86
55	9660	0.67	219.9	15053	0.75	277.76	26111	0.87	371.17
60	10152	0.70	242.9	15820	0.79	306.81	27442	0.91	409.97
65	10628	0.74	266.2	16561	0.83	336.19	28726	0.96	449.25
70	11087	0.77	289.7	17277	0.86	365.91	29968	1.00	488.95
75	11533	0.80	313.5	17972	0.90	395.93	31174	1.04	529.07
80	11966	0.83	337.5	18647	0.93	426.24	32345	1.08	569.57
85	12388	0.86	361.7	19304	0.96	456.81	33485	1.11	610.43
90	12800	0.89	386.1	19945	1.00	487.65	34597	1.15	651.63
95	13201	0.91	410.7	20571	1.03	518.73	35682	1.19	693.17
100	13594	0.94	435.5	21183	1.06	550.05	36743	1.22	735.02
110	14355	0.99	485.6	22368	1.12	613.35	39424	1.31	846
120	15086	1.04	536.4	23509	1.17	677.48	41177	1.37	923
130	15793	1.09	587.8	24609	1.23	742.38	42858	1.43	1000
140	16476	1.14	639.8	25673	1.28	807.99	44476	1.48	1077
150	17138	1.19	692.2	26706	1.33	874.28	46037	1.53	1154
160	17782	1.23	745.2	27709	1.38	941	47547	1.58	1231
170	18409	1.27	798.7	28561	1.43	1000	49010	1.63	1308
180	19020	1.32	852.6	29389	1.47	1059	50431	1.68	1385
190	19593	1.36	905	30195	1.51	1118	51813	1.72	1462
200	20102	1.39	952	30979	1.55	1176	53159	1.77	1538
220	21083	1.46	1048	32491	1.62	1294	55753	1.86	1692
240	22021	1.52	1143	33936	1.69	1412	58232	1.94	1846
260	22920	1.59	1238	35322	1.76	1529	60610	2.02	2000
280	23785	1.65	1333	36655	1.83	1647	62898	2.09	2154
300	24620	1.70	1429	37942	1.89	1765	65106	2.17	2308
350	26592	1.84	1667	40982	2.05	2059	70322	2.34	2692
400	28429	1.97	1905	43811	2.19	2353	75178	2.50	3077
450	30153	2.09	2143	46469	2.32	2647	79738	2.65	3462
500	31784	2.20	2381	48982	2.45	2941	84051	2.80	3846
550	33335	2.31	2619	51373	2.57	3235	88154	2.93	4231
600	34818	2.41	2857	53658	2.68	3529	92073	3.06	4615
650	36239	2.51	3095	55848	2.79	3824	95833	3.19	5000
700	37607	2.60	3333	57957	2.89	4118	99451	3.31	5385

d _a		76.1			88.9		108				
DN		65			80			100			
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}		
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]		
750	38927	2.70	3571	59991	3.00	4412	102941	3.43	5769		
800	40204	2.78	3810	61958	3.09	4706	106317	3.54	6154		
850	41441	2.87	4048	63865	3.19	5000	109589	3.65	6538		
900	42643	2.95	4286	65717	3.28	5294	112767	3.75	6923		
950	43811	3.03	4524	67518	3.37	5588	115857	3.86	7308		
1000	44949	3.11	4762	69272	3.46	5882	118866	3.96	7692		
1100	47143	3.26	5238	72653	3.63	6471	124668	4.15	8462		
1200	49240	3.41	5714	75883	3.79	7059	130212	4.33	9231		
1300	51250	3.55	6190	78982	3.94	7647	135528	4.51	10000		
1400	53185	3.68	6667	81963	4.09	8235	140645	4.68	10769		
1500	55052	3.81	7143	84840	4.24	8824	145581	4.85	11538		
1600	56857	3.94	7619	87622	4.38	9412	150355	5.00	12308		
1700	58607	4.06	8095	90319	4.51	10000	154983	5.16	13077		
1800	60306	4.18	8571	92938	4.64	10588	159476	5.31	13846		
1900	61959	4.29	9048	95484	4.77	11176	163846	5.45	14615		
2000	63568	4.40	9524	97965	4.89	11765	168102	5.59	15385		
2100	65138	4.51	10000	100384	5.01	12353	172254	5.73	16154		
2200	66671	4.62	10476	102746	5.13	12941	176307	5.87	16923		
2300	68169	4.72	10952	105055	5.25	13529	180270	6.00	17692		
2400	69635	4.82	11429	107315	5.36	14118	184147	6.13	18462		
2500	71071	4.92	11905	109528	5.47	14706	187944	6.26	19231		

Tab. 33: Druckverlusttabelle Optipress-Therm-Rohre aus Stahl verzinkt bei Medium Wasser 60 °C, DN 65 ... 100

4.5 Druckverlusttabellen Optipress 1.4520

Ablesebeispiel: Aus der Tabelle für Wasser +7 °C zur Rohrdimension 22 und Druckabfall von R = 50 Pa/m werden abgelesen:

• **m** Wasser-Massenstrom: 232 kg/h

• v Fliessgeschwindigkeit des Wassers: 0.21 m/s

• **P**_{dyn} Dynamischer Druck 22.9 Pa

4.5.1 Medium: Wasser 7 °C

Dichte: 999.9 kg/m³
Viskosität: 0.0014 Pa·s
Oberflächenrauigkeit: 0.0015 mm

d _a		15			18			22		28			
d _i		13			16			19.6			25.6		
R	ṁ	v	P _{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	
25	51	0.11	5.8	90	0.12	7.8	156	0.14	10.4	323	0.17	15.2	
30	57	0.12	7.1	100	0.14	9.6	174	0.16	12.8	358	0.19	18.7	
35	62	0.13	8.5	109	0.15	11.4	190	0.17	15.2	391	0.21	22.3	
40	67	0.14	9.9	118	0.16	13.3	205	0.19	17.8	422	0.23	26.0	
45	72	0.15	11.3	126	0.17	15.2	219	0.20	20.3	452	0.24	29.8	
50	76	0.16	12.7	134	0.19	17.1	232	0.21	22.9	480	0.26	33.6	
55	81	0.17	14.2	141	0.20	19.1	245	0.23	25.6	507	0.27	37.4	
60	85	0.18	15.7	149	0.21	21.1	258	0.24	28.2	533	0.29	41.3	
65	89	0.19	17.2	156	0.22	23.1	270	0.25	30.9	557	0.30	45.3	
70	92	0.19	18.7	162	0.22	25.2	282	0.26	33.7	582	0.31	49.3	
75	96	0.20	20.3	169	0.23	27.3	293	0.27	36.4	605	0.33	53.3	
80	100	0.21	21.8	175	0.24	29.3	304	0.28	39.2	628	0.34	57.4	
85	103	0.22	23.4	181	0.25	31.5	315	0.29	42.0	650	0.35	61.5	
90	107	0.22	25.0	187	0.26	33.6	325	0.30	44.9	671	0.36	65.7	
95	110	0.23	26.5	193	0.27	35.7	335	0.31	47.7	692	0.37	69.9	
100	113	0.24	28.1	199	0.28	37.9	345	0.32	50.6	713	0.39	74.1	
110	120	0.25	31.4	210	0.29	42.2	365	0.34	56.4	753	0.41	82.6	
120	126	0.26	34.7	221	0.31	46.6	383	0.35	62.3	791	0.43	91.3	
130	132	0.28	38.0	231	0.32	51.1	401	0.37	68.3	828	0.45	100.0	
140	137	0.29	41.3	241	0.33	55.6	419	0.39	74.3	864	0.47	108.9	
150	143	0.30	44.7	251	0.35	60.2	435	0.40	80.4	899	0.49	117.8	
160	148	0.31	48.2	260	0.36	64.8	452	0.42	86.6	933	0.50	126.8	
170	153	0.32	51.6	270	0.37	69.4	468	0.43	92.8	966	0.52	135.9	
180	159	0.33	55.1	279	0.39	74.1	483	0.45	99.1	998	0.54	145.1	
190	164	0.34	58.6	287	0.40	78.9	498	0.46	105.4	1029	0.56	154.3	
200	168	0.35	62.2	296	0.41	83.6	513	0.47	111.7	1060	0.57	163.7	
220	178	0.37	69.3	312	0.43	93.2	542	0.50	124.6	1119	0.60	182.5	
240	187	0.39	76.6	328	0.45	103.0	570	0.52	137.6	1176	0.63	201.6	
260	196	0.41	83.9	344	0.48	112.9	596	0.55	150.8	1231	0.66	220.9	
280	204	0.43	91.3	359	0.50	122.8	622	0.57	164.1	1284	0.69	240.4	

d _a		15			18			22		28			
d i		13			16			19.6			25.6		
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	
[Pa/m]	[kg/h]	[m/s]	[Pa]										
300	212	0.44	98.8	373	0.52	132.9	647	0.60	177.6	1336	0.72	260.1	
350	232	0.49	117.8	407	0.56	158.5	707	0.65	211.8	1459	0.79	310.2	
400	250	0.52	137.3	440	0.61	184.7	763	0.70	246.8	1574	0.85	361.4	
450	268	0.56	157.0	470	0.65	211.3	816	0.75	282.3	1684	0.91	413.4	
500	284	0.60	177.1	499	0.69	238.3	866	0.80	318.4	1789	0.97	466.4	
550	300	0.63	197.5	527	0.73	265.7	915	0.84	355.1	1889	1.02	520.0	
600	315	0.66	218.2	554	0.77	293.5	961	0.89	392.2	1985	1.07	574.4	
650	330	0.69	239.1	580	0.80	321.6	1006	0.93	429.8	2078	1.12	629.4	
700	345	0.72	260.2	605	0.84	350.0	1050	0.97	467.8	2168	1.17	685.0	
750	358	0.75	281.5	630	0.87	378.8	1092	1.01	506.1	2255	1.22	741.2	
800	372	0.78	303.1	653	0.90	407.8	1133	1.04	544.9	2340	1.26	798.0	
850	385	0.81	324.8	676	0.93	437.0	1173	1.08	584.0	2422	1.31	855.2	
900	398	0.83	346.8	699	0.97	466.5	1212	1.12	623.4	2502	1.35	913.0	
950	410	0.86	368.9	721	1.00	496.2	1250	1.15	663.1	2581	1.39	971.2	
1000	422	0.88	391.1	742	1.03	526.2	1287	1.19	703.2	2658	1.44	1029.8	
1100	446	0.93	436.1	784	1.08	586.8	1359	1.25	784.1	2807	1.52	1148.3	
1200	469	0.98	481.7	824	1.14	648.1	1429	1.32	866.1	2950	1.59	1268.4	
1300	491	1.03	527.9	862	1.19	710.2	1496	1.38	949.0	3088	1.67	1389.9	
1400	512	1.07	574.6	899	1.24	773.0	1560	1.44	1032.9	3221	1.74	1512.7	
1500	533	1.12	621.7	936	1.29	836.4	1623	1.50	1117.6	3351	1.81	1636.8	
1600	553	1.16	669.3	971	1.34	900.4	1684	1.55	1203.2	3477	1.88	1762.1	
1700	572	1.20	717.3	1005	1.39	965.0	1743	1.61	1289.5	3599	1.94	1888.5	
1800	591	1.24	765.7	1038	1.44	1030.1	1801	1.66	1376.6	3719	2.01	2016.0	
1900	610	1.28	814.5	1071	1.48	1095.8	1858	1.71	1464.3	3835	2.07	2144.5	
2000	628	1.31	863.7	1103	1.52	1161.9	1913	1.76	1552.7	3949	2.13	2274.0	
2100	645	1.35	913.2	1134	1.57	1228.6	1967	1.81	1641.8	4061	2.19	2404.4	
2200	663	1.39	963.1	1165	1.61	1295.7	2020	1.86	1731.4	4171	2.25	2535.6	
2300	680	1.42	1013.3	1194	1.65	1363.2	2072	1.91	1821.6	4278	2.31	2667.8	
2400	697	1.46	1063.8	1224	1.69	1431.1	2123	1.96	1912.4	4383	2.37	2800.8	
2500	713	1.49	1114.6	1253	1.73	1499.5	2173	2.00	2003.8	4487	2.42	2934.5	

Tab. 34: Druckverlusttabelle Optipress 1.4520-Rohre bei Medium Wasser 7 °C, d_a 15 ... 28 mm

Dichte: 999.9 kg/m³
Viskosität: 0.0014 Pa·s
Oberflächenrauigkeit: 0.0015 mm

d _a		35			42			54		64		
d _i		32			39			51			61	
R	ṁ	V	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	592	0.20	20.9	1012	0.24	27.7	2097	0.29	40.7	3409	0.32	52.5
30	657	0.23	25.7	1123	0.26	34.2	2327	0.32	50.1	3783	0.36	64.7
35	717	0.25	30.7	1227	0.29	40.7	2541	0.35	59.8	4131	0.39	77.2
40	774	0.27	35.8	1324	0.31	47.5	2743	0.37	69.6	4459	0.42	89.9
45	828	0.29	40.9	1416	0.33	54.3	2934	0.40	79.6	4769	0.45	102.9
50	879	0.30	46.2	1504	0.35	61.2	3116	0.42	89.8	5065	0.48	116.0
55	928	0.32	51.5	1588	0.37	68.3	3290	0.45	100.2	5349	0.51	129.4
60	976	0.34	56.9	1669	0.39	75.4	3458	0.47	110.7	5621	0.53	142.9
65	1021	0.35	62.3	1748	0.41	82.7	3620	0.49	121.3	5885	0.56	156.6
70	1066	0.37	67.8	1823	0.42	90.0	3776	0.51	132.0	6139	0.58	170.4
75	1109	0.38	73.4	1896	0.44	97.3	3928	0.53	142.8	6386	0.61	184.4
80	1150	0.40	79.0	1968	0.46	104.8	4076	0.55	153.7	6626	0.63	198.5
85	1191	0.41	84.7	2037	0.47	112.3	4219	0.57	164.8	6859	0.65	212.8
90	1230	0.43	90.4	2105	0.49	119.9	4359	0.59	175.9	7087	0.67	227.1
95	1269	0.44	96.1	2171	0.51	127.5	4496	0.61	187.1	7310	0.70	241.6
100	1307	0.45	101.9	2235	0.52	135.2	4630	0.63	198.4	7527	0.72	256.2
110	1380	0.48	113.7	2360	0.55	150.8	4889	0.67	221.2	7948	0.76	285.7
120	1450	0.50	125.6	2481	0.58	166.6	5138	0.70	244.3	8353	0.79	315.6
130	1518	0.52	137.6	2597	0.60	182.5	5379	0.73	267.7	8744	0.83	345.8
140	1584	0.55	149.7	2709	0.63	198.6	5611	0.76	291.4	9123	0.87	376.4
150	1647	0.57	162.0	2818	0.66	214.9	5837	0.79	315.3	9490	0.90	407.2
160	1709	0.59	174.4	2924	0.68	231.4	6056	0.82	339.5	9846	0.94	438.4
170	1769	0.61	186.9	3027	0.70	248.0	6270	0.85	363.8	10193	0.97	469.9
180	1828	0.63	199.6	3128	0.73	264.7	6478	0.88	388.4	10532	1.00	501.6
190	1885	0.65	212.3	3226	0.75	281.6	6681	0.91	413.1	10862	1.03	533.5
200	1942	0.67	225.1	3322	0.77	298.6	6880	0.94	438.1	11185	1.06	565.8
220	2050	0.71	251.0	3508	0.82	333.0	7265	0.99	488.5	11811	1.12	630.9
240	2155	0.74	277.2	3686	0.86	367.8	7635	1.04	539.6	12413	1.18	696.8
260 280	2256 2353	0.78 0.81	303.8	3859 4026	0.90 0.94	403.0 438.6	7993 8338	1.09	591.2	12994	1.24	763.6
300	2448	0.85	330.7		0.94	474.6	8674	1.13 1.18	643.5 696.3	13556 14101	1.29 1.34	831.1 899.2
350	2673	0.85	357.8 426.7	4188 4573	1.06	566.1	9472	1.18	830.4	15400	1.46	1072.5
400	2885	1.00	497.1	4936	1.15	659.4	10223	1.39	967.3	16621	1.58	1249.3
450	3086	1.07	568.7	5280	1.13	754.4	10223	1.49	1106.7	17778	1.69	1429.3
500	3278	1.13	641.4	5607	1.30	850.9	11614	1.58	1248.3	18881	1.80	1612.2
550	3461	1.13	715.3	5921	1.38	948.9	12264	1.67	1392.0	19938	1.90	1797.7
600	3637	1.26	790.0	6223	1.45	1048.1	12889	1.75	1537.5	20955	1.99	1985.7
650	3808	1.32	865.7	6514	1.52	1148.5	13492	1.84	1684.8	21935	2.09	2175.9
700	3972	1.37	942.2	6796	1.58	1250.0	14076	1.92	1833.7		2.18	2368.2
700	JUIL	1.57	J+Z.Z	0/30	1.50	1230.0	1-10/0	1.32	1000.7	22004	2.10	2500.2

d _a		35			42			54			64	
d i		32			39			51			61	
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
750	4132	1.43	1019.5	7069	1.64	1352.5	14642	1.99	1984.2	23804	2.26	2562.5
800	4287	1.48	1097.6	7335	1.71	1456.0	15192	2.07	2136.0	24699	2.35	2758.6
850	4438	1.53	1176.3	7593	1.77	1560.5	15727	2.14	2289.3	25569	2.43	2956.5
900	4586	1.58	1255.7	7845	1.83	1665.8	16250	2.21	2443.8	26418	2.51	3156.1
950	4730	1.63	1335.8	8091	1.88	1772.0	16759	2.28	2599.6	27247	2.59	3357.3
1000	4870	1.68	1416.4	8332	1.94	1879.0	17258	2.35	2756.5	28058	2.67	3560.0
1100	5143	1.78	1579.4	8799	2.05	2095.2	18224	2.48	3073.8	29628	2.82	3969.7
1200	5405	1.87	1744.6	9247	2.15	2314.3	19153	2.61	3395.1	31138	2.96	4384.7
1300	5658	1.96	1911.7	9680	2.25	2536.0	20049	2.73	3720.4	32596	3.10	4804.7
1400	5903	2.04	2080.6	10099	2.35	2760.1	20916	2.85	4049.2	34006	3.23	5229.4
1500	6140	2.12	2251.3	10505	2.44	2986.6	21758	2.96	4381.4	35373	3.36	5658.4
1600	6371	2.20	2423.7	10899	2.54	3215.2	22575	3.07	4716.8	36702	3.49	6091.6
1700	6595	2.28	2597.5	11283	2.63	3445.9	23371	3.18	5055.1	37996	3.61	6528.6
1800	6814	2.36	2772.9	11658	2.71	3678.5	24147	3.29	5396.4	39257	3.73	6969.3
1900	7028	2.43	2949.6	12024	2.80	3912.9	24904	3.39	5740.4	40489	3.85	7413.5
2000	7237	2.50	3127.7	12382	2.88	4149.2	25645	3.49	6086.9	41693	3.97	7861.1
2100	7442	2.57	3307.1	12732	2.96	4387.1	26370	3.59	6436.0	42872	4.08	8311.9
2200	7642	2.64	3487.6	13075	3.04	4626.6	27081	3.68	6787.4	44027	4.19	8765.7
2300	7839	2.71	3669.4	13411	3.12	4867.8	27777	3.78	7141.1	45160	4.29	9222.6
2400	8032	2.78	3852.3	13741	3.20	5110.4	28461	3.87	7497.0	46271	4.40	9682.2
2500	8222	2.84	4036.3	14065	3.27	5354.5	29133	3.96	7855.1	47363	4.50	10144.6

Tab. 35: Druckverlusttabelle Optipress 1.4520-Rohre bei Medium Wasser 7 °C, da 35 \dots 64 mm

d _a		76.1			88.9		108			
d i		73.1			85.9			105		
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	
[Pa/m]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]	
25	5571	0.37	68.0	8632	0.41	85.7	14886	0.48	114.1	
30	6182	0.41	83.8	9580	0.46	105.5	16520	0.53	140.6	
35	6751	0.45	100.0	10462	0.50	125.9	18042	0.58	167.7	
40	7287	0.48	116.4	11291	0.54	146.6	19472	0.63	195.3	
45	7794	0.52	133.2	12077	0.58	167.7	20828	0.67	223.5	
50	8278	0.55	150.3	12827	0.62	189.2	22120	0.71	252.1	
55	8741	0.58	167.5	13545	0.65	211.0	23359	0.75	281.1	
60	9187	0.61	185.1	14235	0.68	233.0	24549	0.79	310.5	
65	9617	0.64	202.8	14901	0.71	255.4	25698	0.82	340.2	
70	10033	0.66	220.7	15546	0.75	277.9	26810	0.86	370.3	
75	10436	0.69	238.8	16171	0.78	300.7	27888	0.90	400.6	
80	10828	0.72	257.1	16779	0.80	323.8	28936	0.93	431.3	
85	11210	0.74	275.5	17370	0.83	347.0	29956	0.96	462.2	
90	11582	0.77	294.1	17947	0.86	370.4	30950	0.99	493.4	
95	11945	0.79	312.9	18510	0.89	394.0	31921	1.02	524.9	
100	12301	0.81	331.8	19061	0.91	417.8	32871	1.06	556.6	
110	12989	0.86	370.0	20127	0.97	465.9	34711	1.11	620.6	
120	13651	0.90	408.7	21153	1.01	514.6	36480	1.17	685.5	
130	14290	0.95	447.8	22143	1.06	563.9	38187	1.23	751.2	
140	14908	0.99	487.4	23101	1.11	613.7	39839	1.28	817.6	
150	15508	1.03	527.4	24030	1.15	664.1	41441	1.33	884.7	
160	16091	1.07	567.7	24933	1.20	714.9	42998	1.38	952.4	
170	16658	1.10	608.5	25812	1.24	766.2	44514	1.43	1020.7	
180	17211	1.14	649.5	26669	1.28	817.9	45992	1.48	1089.6	
190	17751	1.18	690.9	27506	1.32	870.0	47435	1.52	1159.1	
200	18279	1.21	732.6	28324	1.36	922.6	48846	1.57	1229.0	
220	19302	1.28	817.0	29909	1.43	1028.7	51580	1.66	1370.5	
240	20286	1.34	902.4	31434	1.51	1136.3	54209	1.74	1513.8 1658.8	
260 280	21235 22154	1.41 1.47	988.8 1076.2	32905 34328	1.58 1.65	1245.2 1355.2	56746 59201	1.82 1.90	1805.4	
300	23045	1.53	1164.5	35709	1.71	1466.4	61582	1.98	1953.5	
350	25167	1.67	1388.8	38997	1.87	1748.9	67252	2.16	2329.8	
400	27162	1.80	1617.8	42089	2.02	2037.2	72585	2.33	2713.9	
450	29053	1.92	1850.9	45019	2.16	2330.8	77638	2.49	3105.0	
500	30856	2.04	2087.8	47813	2.29	2629.0	82456	2.65	3502.3	
550	32583	2.16	2328.0	50489	2.42	2931.5	87071	2.79	3905.4	
600	34244	2.27	2571.4	53063	2.54	3238.0	91510	2.94	4313.7	
650	35847	2.37	2817.8	55547	2.66	3548.2	95793	3.07	4726.9	
700	37398	2.48	3066.8	57949	2.78	3861.8	99936	3.21	5144.7	

d _a		76.1			88.9		108			
d _i		73.1			85.9			105		
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}	
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	
750	38901	2.58	3318.4	60280	2.89	4178.7	103955	3.34	5566.8	
800	40363	2.67	3572.4	62544	3.00	4498.5	107860	3.46	5992.9	
850	41786	2.77	3828.7	64749	3.11	4821.3	111662	3.58	6422.8	
900	43173	2.86	4087.2	66899	3.21	5146.7	115370	3.70	6856.4	
950	44528	2.95	4347.7	68998	3.31	5474.8	118990	3.82	7293.4	
1000	45852	3.04	4610.2	71050	3.41	5805.3	122529	3.93	7733.8	
1100	48418	3.21	5140.7	75027	3.60	6473.4	129387	4.15	8623.8	
1200	50887	3.37	5678.2	78852	3.78	7150.2	135983	4.36	9525.4	
1300	53268	3.53	6222.1	82542	3.96	7835.1	142347	4.57	10437.9	
1400	55573	3.68	6772.0	86112	4.13	8527.6	148505	4.77	11360.4	
1500	57807	3.83	7327.6	89575	4.30	9227.2	154477	4.96	12292.4	
1600	59979	3.97	7888.5	92940	4.46	9933.5	160280	5.14	13233.4	
1700	62093	4.11	8454.5	96216	4.61	10646.2	165930	5.33	14182.7	
1800	64155	4.25	9025.2	99411	4.77	11364.9	171439	5.50	15140.2	
1900	66168	4.38	9600.5	102530	4.92	12089.3	176818	5.68	16105.2	
2000	68136	4.51	10180.1	105580	5.06	12819.1	182078	5.84	17077.5	
2100	70062	4.64	10763.8	108565	5.21	13554.2	187225	6.01	18056.8	
2200	71950	4.77	11351.6	111490	5.35	14294.4	192269	6.17	19042.8	
2300	73801	4.89	11943.2	114358	5.48	15039.3	197215	6.33	20035.2	
2400	75617	5.01	12538.4	117173	5.62	15788.9	202070	6.49	21033.8	
2500	77402	5.13	13137.3	119938	5.75	16542.9	206839	6.64	22038.3	

Tab. 36: Druckverlusttabelle Optipress 1.4520-Rohre bei Medium Wasser 7 °C, d_a 76.1 ... 108 mm

4.5.2 Medium: Wasser 40 °C

d _a	15 13				18			22			28	
d i		13			16			19.6			25.6	
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	56	0.12	7.0	99	0.14	9.5	172	0.16	12.6	355	0.19	18.5
30	63	0.13	8.7	110	0.15	11.6	191	0.18	15.6	394	0.21	22.8
35	68	0.14	10.3	120	0.17	13.9	208	0.19	18.6	430	0.23	27.2
40	74	0.16	12.0	130	0.18	16.2	225	0.21	21.6	464	0.25	31.7
45	79	0.17	13.8	139	0.19	18.5	241	0.22	24.7	497	0.27	36.2
50	84	0.18	15.5	147	0.21	20.9	255	0.24	27.9	527	0.29	40.9
55	89	0.19	17.3	155	0.22	23.3	270	0.25	31.1	557	0.30	45.6
60	93	0.20	19.1	163	0.23	25.7	283	0.26	34.4	585	0.32	50.3
65	97	0.21	20.9	171	0.24	28.2	297	0.28	37.7	613	0.33	55.2
70	102	0.21	22.8	178	0.25	30.7	310	0.29	41.0	639	0.35	60.0
75	106	0.22	24.7	186	0.26	33.2	322	0.30	44.4	665	0.36	65.0
80	110	0.23	26.6	193	0.27	35.7	334	0.31	47.7	690	0.38	69.9
85	113	0.24	28.5	199	0.28	38.3	346	0.32	51.2	714	0.39	74.9
90	117	0.25	30.4	206	0.29	40.9	357	0.33	54.6	738	0.40	80.0
95	121	0.26	32.3	212	0.30	43.5	369	0.34	58.1	761	0.41	85.1
100	125	0.26	34.3	219	0.30	46.1	380	0.35	61.6	784	0.43	90.2
110	132	0.28	38.2	231	0.32	51.4	401	0.37	68.7	828	0.45	100.6
120	138	0.29	42.2	243	0.34	56.8	421	0.39	75.9	870	0.47	111.1
130	145	0.31	46.3	254	0.35	62.2	441	0.41	83.2	910	0.50	121.8
140	151	0.32	50.3	265	0.37	67.7	460	0.43	90.5	950	0.52	132.6
150	157	0.33	54.5	276	0.38	73.3	479	0.44	97.9	988	0.54	143.4
160	163	0.34	58.6	286	0.40	78.9	497	0.46	105.4	1025	0.56	154.4
170	169	0.36	62.9	296	0.41	84.6	514	0.48	113.0	1061	0.58	165.5
180	174	0.37	67.1	306	0.43	90.3	531	0.49	120.6	1096	0.60	176.7
190	180	0.38	71.4	316	0.44	96.0	548	0.51	128.3	1131	0.62	187.9
200	185	0.39	75.7	325	0.45	101.8	564	0.52	136.1	1165	0.63	199.3
220	195	0.41	84.4	343	0.48	113.5	596	0.55	151.7	1230	0.67	222.2
240	205	0.43	93.2	361	0.50	125.4	626	0.58	167.6	1292	0.70	245.4
260	215	0.45	102.2	378	0.53	137.4	655	0.61	183.6	1353	0.74	268.9
280	224	0.47	111.2	394	0.55	149.6	684	0.63	199.9	1411	0.77	292.7
300	233	0.49	120.3	410	0.57	161.8	711	0.66	216.3	1468	0.80	316.7
350	255	0.54	143.5	448	0.62	193.0	777	0.72	257.9	1603	0.87	377.7
400	275	0.58	167.1	483	0.67	224.8	838	0.78	300.5	1730	0.94	440.0
450	294	0.62	191.2	517	0.72	257.2	897	0.83	343.8	1851	1.01	503.4
500	312	0.66	215.7	549	0.76	290.2	952	0.88	387.7	1966	1.07	567.8
550	330	0.70	240.5	580	0.81	323.5	1005	0.93	432.4	2076	1.13	633.2
600	347	0.73	265.6	609	0.85	357.4	1057	0.98	477.6	2182	1.19	699.4
650	363	0.77	291.1	638	0.89	391.6	1106	1.03	523.3	2284	1.24	766.4

d _a	15				18			22		28			
d _i		13			16			19.6			25.6		
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}	
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	
700	379	0.80	316.8	665	0.93	426.2	1154	1.07	569.6	2383	1.30	834.1	
750	394	0.83	342.8	692	0.96	461.2	1200	1.11	616.3	2478	1.35	902.6	
800	409	0.86	369.1	718	1.00	496.5	1246	1.16	663.5	2571	1.40	971.7	
850	423	0.89	395.5	743	1.04	532.1	1289	1.20	711.1	2662	1.45	1041.4	
900	437	0.92	422.2	768	1.07	568.0	1332	1.24	759.1	2750	1.50	1111.7	
950	451	0.95	449.1	792	1.10	604.2	1374	1.28	807.4	2837	1.54	1182.5	
1000	464	0.98	476.3	816	1.14	640.7	1415	1.31	856.2	2921	1.59	1253.9	
1100	490	1.03	531.1	861	1.20	714.4	1494	1.39	954.7	3085	1.68	1398.2	
1200	515	1.09	586.6	905	1.26	789.1	1570	1.46	1054.5	3242	1.76	1544.4	
1300	539	1.14	642.8	948	1.32	864.7	1644	1.53	1155.6	3394	1.85	1692.3	
1400	563	1.19	699.6	989	1.38	941.2	1715	1.59	1257.7	3540	1.93	1841.9	
1500	585	1.24	757.0	1028	1.43	1018.4	1784	1.66	1360.9	3683	2.00	1993.0	
1600	607	1.28	814.9	1067	1.49	1096.3	1851	1.72	1465.1	3821	2.08	2145.6	
1700	629	1.33	873.4	1105	1.54	1175.0	1916	1.78	1570.2	3956	2.15	2299.5	
1800	650	1.37	932.4	1141	1.59	1254.3	1980	1.84	1676.2	4087	2.22	2454.7	
1900	670	1.41	991.8	1177	1.64	1334.3	2042	1.90	1783.0	4215	2.29	2611.2	
2000	690	1.46	1051.7	1212	1.69	1414.8	2103	1.95	1890.6	4341	2.36	2768.8	
2100	709	1.50	1112.0	1246	1.74	1495.9	2162	2.01	1999.1	4464	2.43	2927.6	
2200	728	1.54	1172.7	1280	1.78	1577.6	2220	2.06	2108.2	4584	2.49	3087.5	
2300	747	1.58	1233.8	1313	1.83	1659.8	2277	2.11	2218.1	4702	2.56	3248.4	
2400	766	1.62	1295.3	1345	1.87	1742.6	2333	2.17	2328.6	4817	2.62	3410.3	
2500	784	1.65	1357.2	1377	1.92	1825.8	2389	2.22	2439.8	4931	2.68	3573.2	

Tab. 37: Druckverlusttabelle Optipress 1.4520-Rohre bei Medium Wasser 40 °C, d_a 15 ... 28 mm

d _a	35				42			54			64	
d _i		32			39			51			61	
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	650	0.23	25.5	1113	0.26	33.8	2304	0.32	49.5	3746	0.36	64.0
30	722	0.25	31.4	1235	0.29	41.6	2557	0.35	61.0	4158	0.40	78.8
35	788	0.27	37.4	1348	0.32	49.6	2793	0.38	72.8	4541	0.44	94.0
40	851	0.30	43.6	1455	0.34	57.8	3014	0.41	84.8	4901	0.47	109.5
45	910	0.32	49.8	1557	0.37	66.1	3224	0.44	97.0	5242	0.50	125.3
50	966	0.34	56.2	1653	0.39	74.6	3424	0.47	109.4	5567	0.53	141.3
55	1020	0.36	62.7	1746	0.41	83.1	3616	0.50	122.0	5879	0.56	157.5
60	1073	0.37	69.2	1835	0.43	91.8	3800	0.52	134.7	6179	0.59	174.0
65	1123	0.39	75.9	1921	0.45	100.6	3978	0.55	147.6	6468	0.62	190.7
70	1171	0.41	82.6	2004	0.47	109.5	4150	0.57	160.7	6747	0.65	207.5
75	1218	0.42	89.3	2084	0.49	118.5	4317	0.59	173.9	7019	0.67	224.6
80	1264	0.44	96.2	2163	0.51	127.6	4479	0.61	187.2	7282	0.70	241.7
85	1309	0.46	103.1	2239	0.53	136.7	4637	0.64	200.6	7539	0.72	259.1
90	1352	0.47	110.0	2313	0.54	146.0	4791	0.66	214.2	7789	0.75	276.6
95	1395	0.49	117.1	2386	0.56	155.3	4942	0.68	227.8	8034	0.77	294.2
100	1436	0.50	124.1	2457	0.58	164.7	5089	0.70	241.6	8273	0.79	312.0
110	1516	0.53	138.4	2594	0.61	183.6	5373	0.74	269.4	8736	0.84	347.9
120	1594	0.56	152.9	2727	0.64	202.8	5647	0.77	297.5	9181	0.88	384.2
130	1668	0.58	167.5	2854	0.67	222.2	5912	0.81	326.0	9611	0.92	421.0
140	1740	0.61	182.3	2978	0.70	241.9	6167	0.85	354.8	10027	0.96	458.3
150	1810	0.63	197.3	3097	0.73	261.7	6415	0.88	383.9	10430	1.00	495.9
160	1878	0.65	212.4	3214	0.75	281.8	6656	0.91	413.3	10822	1.04	533.8
170	1945	0.68	227.6	3327	0.78	302.0	6891	0.95	443.0	11203	1.07	572.1
180	2009	0.70	243.0	3437	0.81	322.3	7120	0.98	472.9	11575	1.11	610.7
190	2072	0.72	258.5	3545	0.83	342.9	7343	1.01	503.0	11938	1.14	649.7
200	2134	0.74	274.1	3651	0.86	363.6	7562	1.04	533.4	12293	1.18	688.9
220	2253	0.78	305.6	3855	0.90	405.4	7985	1.10	594.8	12982	1.24	768.2
240 260	2368 2479	0.82	337.6 369.9	4052 4241	0.95	447.8 490.7	8392 8785	1.15 1.20	657.0 719.9	13643 14282	1.31 1.37	848.5 929.7
280	2586	0.80	402.6	4425	1.04	534.1	9165	1.26	783.5	14900	1.43	1011.9
300	2690	0.94	435.6	4603	1.04	577.9	9533	1.31	847.8	15499	1.49	1011.9
350	2938	1.02	519.6	5026	1.18	689.3	10411	1.43	1011.1	16926	1.62	1305.9
400	3171	1.10	605.2	5425	1.27	802.9	11236	1.54	1177.9	18268	1.75	1503.3
450	3392	1.18	692.4	5803	1.36	918.6	12019	1.65	1347.6	19540	1.87	1740.3
500	3602	1.25	781.0	6163	1.45	1036.1	12765	1.75	1520.0	20752	1.99	1963.0
550	3804	1.33	870.9	6508	1.53	1155.4	13479	1.85	1694.9	21914	2.10	2189.0
600	3998	1.39	962.0	6839	1.60	1276.1	14166	1.94	1872.1	23031	2.21	2417.8
650	4185	1.46	1054.1	7160	1.68	1398.4	14829	2.03	2051.5	24109	2.31	2649.4
700	4366	1.52	1147.3	7469	1.75	1522.0	15471	2.12	2232.8	25152	2.41	2883.6
650	4185	1.46	1054.1	7160	1.68	1398.4	14829	2.03	2051.5	24109	2.31	2649.4

d _a		35			42			54			64	
d i		32			39			51			61	
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]									
750	4542	1.58	1241.4	7770	1.82	1646.9	16093	2.21	2416.0	26163	2.51	3120.2
800	4712	1.64	1336.5	8062	1.89	1772.9	16697	2.29	2600.9	27146	2.60	3359.0
850	4878	1.70	1432.3	8346	1.96	1900.1	17286	2.37	2787.5	28103	2.69	3600.0
900	5040	1.76	1529.0	8623	2.02	2028.4	17860	2.45	2975.7	29036	2.78	3843.0
950	5198	1.81	1626.5	8893	2.09	2157.7	18420	2.53	3165.3	29947	2.87	4088.0
1000	5353	1.86	1724.7	9158	2.15	2287.9	18968	2.60	3356.4	30838	2.96	4334.8
1100	5653	1.97	1923.2	9670	2.27	2551.2	20030	2.75	3742.7	32564	3.12	4833.6
1200	5941	2.07	2124.2	10163	2.38	2818.0	21051	2.89	4134.0	34224	3.28	5339.0
1300	6219	2.17	2327.7	10639	2.50	3087.9	22036	3.02	4530.0	35826	3.43	5850.4
1400	6488	2.26	2533.4	11099	2.60	3360.8	22989	3.15	4930.4	37375	3.58	6367.5
1500	6749	2.35	2741.3	11546	2.71	3636.6	23914	3.28	5334.9	38878	3.73	6889.9
1600	7002	2.44	2951.1	11979	2.81	3914.9	24812	3.40	5743.3	40339	3.87	7417.3
1700	7249	2.53	3162.8	12402	2.91	4195.8	25687	3.52	6155.3	41761	4.00	7949.4
1800	7490	2.61	3376.4	12813	3.01	4479.0	26540	3.64	6570.8	43147	4.14	8486.0
1900	7725	2.69	3591.6	13215	3.10	4764.5	27372	3.75	6989.6	44501	4.27	9026.9
2000	7955	2.77	3808.4	13609	3.19	5052.2	28186	3.87	7411.6	45825	4.39	9571.9
2100	8179	2.85	4026.8	13993	3.28	5341.9	28983	3.97	7836.6	47121	4.52	10120.8
2200	8400	2.93	4246.7	14370	3.37	5633.6	29764	4.08	8264.6	48390	4.64	10673.4
2300	8616	3.00	4468.0	14740	3.46	5927.2	30530	4.19	8695.3	49635	4.76	11229.7
2400	8828	3.08	4690.7	15103	3.54	6222.6	31281	4.29	9128.6	50857	4.88	11789.4
2500	9036	3.15	4914.7	15459	3.63	6519.8	32020	4.39	9564.6	52057	4.99	12352.5

Tab. 38: Druckverlusttabelle Optipress 1.4520-Rohre bei Medium Wasser 40 °C, da 35 \dots 64 mm

\mathbf{d}_{a}		76.1			88.9		108			
\mathbf{d}_{i}		73.1			85.9			105		
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	
[Pa/m]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]	
25	6123	0.41	82.9	9487	0.46	104.3	16361	0.53	139.0	
30	6795	0.41	102.0	10529	0.40	128.5	18158	0.59	171.2	
35	7420	0.50	121.7	11498	0.56	153.3	19830	0.64	204.2	
40	8009	0.53	141.8	12410	0.60	178.5	21402	0.69	237.8	
45	8566	0.57	162.2	13274	0.64	204.2	22892	0.74	272.1	
50	9098	0.61	183.0	14098	0.68	230.4	24312	0.79	306.9	
55	9607	0.64	204.0	14887	0.72	256.9	25673	0.83	342.2	
60	10097	0.67	225.3	15646	0.76	283.8	26982	0.87	378.0	
65	10570	0.71	246.9	16378	0.79	310.9	28245	0.91	414.2	
70	11027	0.74	268.7	17087	0.83	338.4	29467	0.95	450.8	
75	11470	0.77	290.8	17774	0.86	366.2	30652	0.99	487.8	
80	11901	0.79	313.1	18441	0.89	394.2	31803	1.03	525.2	
85	12321	0.82	335.5	19091	0.92	422.5	32924	1.07	562.8	
90	12730	0.85	358.2	19725	0.95	451.0	34017	1.10	600.8	
95	13129	0.88	381.0	20344	0.98	479.8	35085	1.14	639.1	
100	13520	0.90	404.0	20949	1.01	508.7	36128	1.17	677.7	
110	14276	0.95	450.5	22122	1.07	567.3	38150	1.23	755.7	
120	15004	1.00	497.6	23250	1.12	626.6	40095	1.30	834.7	
130	15706	1.05	545.3	24338	1.18	686.6	41972	1.36	914.7	
140	16386	1.09	593.4	25391	1.23	747.3	43787	1.42	995.5	
150	17045	1.14	642.1	26412	1.28	808.6	45548	1.47	1077.2	
160	17685	1.18	691.3	27404	1.32	870.5	47259	1.53	1159.7	
170	18308	1.22	740.9	28370	1.37	932.9	48925	1.58	1242.9	
180	18916	1.26	790.9	29312	1.42	995.9	50549	1.64	1326.8	
190	19510	1.30	841.3	30231	1.46	1059.4	52136	1.69	1411.3	
200	20090	1.34	892.1	31131	1.50	1123.4	53686	1.74	1496.5	
220	21215	1.42	994.8	32873	1.59	1252.6	56691	1.83	1668.7	
240	22296	1.49	1098.8	34549	1.67	1383.6	59581	1.93	1843.2	
260	23340	1.56	1204.0	36166	1.75	1516.1	62370	2.02	2019.8	
280	24349	1.63	1310.4	37730	1.82	1650.1	65068	2.11	2198.3	
300	25328	1.69	1417.9	39247	1.90	1785.5	67684	2.19	2378.7	
350	27661	1.85	1691.1	42861	2.07	2129.5	73917	2.39	2836.9	
400	29854	1.99	1969.9	46260	2.24	2480.6	79778	2.58	3304.6	
450	31932	2.13	2253.7	49481	2.39	2838.0	85332	2.76	3780.8	
500	33914	2.26	2542.1	52551	2.54	3201.2	90627	2.93	4264.5	
550	35812	2.39	2834.7	55493	2.68	3569.5	95700	3.10	4755.3	
600	37638	2.51	3131.1	58322	2.82	3942.8	100578	3.25	5252.5	
650	39399	2.63	3431.0	61051	2.95	4320.4	105285	3.41	5755.6	
700	41103	2.74	3734.2	63692	3.08	4702.3	109840	3.55	6264.3	

d _a		76.1			88.9			108	
d i		73.1			85.9			105	
R	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
750	42756	2.85	4040.6	66253	3.20	5088.1	114257	3.70	6778.3
800	44363	2.96	4349.9	68742	3.32	5477.6	118549	3.84	7297.1
850	45926	3.07	4662.0	71165	3.44	5870.5	122728	3.97	7820.6
900	47451	3.17	4976.7	73528	3.55	6266.8	126802	4.10	8348.6
950	48940	3.27	5293.9	75835	3.67	6666.3	130781	4.23	8880.7
1000	50396	3.36	5613.5	78091	3.78	7068.7	134671	4.36	9416.9
1100	53217	3.55	6259.5	82462	3.99	7882.2	142209	4.60	10500.6
1200	55929	3.73	6913.9	86665	4.19	8706.3	149459	4.84	11598.4
1300	58547	3.91	7576.2	90721	4.39	9540.3	156454	5.06	12709.5
1400	61080	4.08	8245.9	94646	4.58	10383.5	163221	5.28	13832.8
1500	63536	4.24	8922.4	98452	4.76	11235.4	169785	5.49	14967.7
1600	65923	4.40	9605.3	102150	4.94	12095.4	176163	5.70	16113.4
1700	68246	4.56	10294.4	105751	5.11	12963.2	182373	5.90	17269.4
1800	70512	4.71	10989.4	109262	5.28	13838.2	188428	6.10	18435.2
1900	72725	4.85	11689.8	112691	5.45	14720.3	194340	6.29	19610.2
2000	74888	5.00	12395.6	116042	5.61	15609.0	200121	6.47	20794.1
2100	77005	5.14	13106.4	119323	5.77	16504.1	205779	6.66	21986.6
2200	79080	5.28	13822.1	122538	5.92	17405.3	211322	6.84	23187.1
2300	81114	5.41	14542.4	125690	6.08	18312.3	216759	7.01	24395.5
2400	83111	5.55	15267.2	128784	6.23	19225.1	222095	7.19	25611.4
2500	85072	5.68	15996.4	131824	6.37	20143.2	227337	7.36	26834.6

Tab. 39: Druckverlusttabelle Optipress 1.4520-Rohre bei Medium Wasser 40 °C, d_a 76.1 ... 108 mm

4.5.3 Medium: Wasser 60 °C

d _a	15 13				18			22			28	
d i		13			16			19.6			25.6	
R	ṁ	v	P _{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	59	0.13	7.7	103	0.15	10.4	179	0.17	13.9	370	0.20	20.3
30	65	0.14	9.5	115	0.16	12.8	199	0.19	17.1	411	0.23	25.1
35	71	0.15	11.4	125	0.18	15.3	217	0.20	20.4	449	0.25	29.9
40	77	0.16	13.2	135	0.19	17.8	235	0.22	23.8	485	0.27	34.8
45	82	0.18	15.1	145	0.20	20.4	251	0.24	27.2	518	0.28	39.8
50	87	0.19	17.1	154	0.22	23.0	267	0.25	30.7	550	0.30	44.9
55	92	0.20	19.0	162	0.23	25.6	282	0.26	34.2	581	0.32	50.1
60	97	0.21	21.0	171	0.24	28.3	296	0.28	37.8	611	0.34	55.3
65	102	0.22	23.0	179	0.25	31.0	310	0.29	41.4	639	0.35	60.6
70	106	0.23	25.1	186	0.26	33.7	323	0.30	45.1	667	0.37	66.0
75	110	0.23	27.1	194	0.27	36.5	336	0.31	48.8	694	0.38	71.4
80	114	0.24	29.2	201	0.28	39.3	349	0.33	52.5	720	0.40	76.9
85	118	0.25	31.3	208	0.29	42.1	361	0.34	56.3	745	0.41	82.4
90	122	0.26	33.4	215	0.30	44.9	373	0.35	60.1	770	0.42	88.0
95	126	0.27	35.5	222	0.31	47.8	385	0.36	63.9	794	0.44	93.6
100	130	0.28	37.7	228	0.32	50.7	396	0.37	67.7	818	0.45	99.2
110	137	0.29	42.0	241	0.34	56.5	418	0.39	75.5	864	0.47	110.6
120	144	0.31	46.4	253	0.36	62.4	440	0.41	83.4	908	0.50	122.2
130	151	0.32	50.9	265	0.37	68.4	460	0.43	91.4	950	0.52	133.9
140	158	0.34	55.4	277	0.39	74.5	480	0.45	99.5	991	0.54	145.7
150	164	0.35	59.9	288	0.40	80.6	500	0.47	107.7	1031	0.57	157.7
160	170	0.36	64.5	299	0.42	86.8	518	0.49	115.9	1070	0.59	169.8
170	176	0.37	69.1	309	0.43	93.0	537	0.50	124.2	1108	0.61	182.0
180	182	0.39	73.8	320	0.45	99.3	554	0.52	132.6	1144	0.63	194.2
190	188	0.40	78.5	330	0.46	105.6	572	0.54	141.1	1180	0.65	206.6
200	193	0.41	83.2	339	0.48	112.0	589	0.55	149.6	1216	0.67	219.1
220	204	0.43	92.8	358	0.50	124.8	622	0.58	166.8	1284	0.71	244.3
240	214	0.46	102.5	377	0.53	137.9	653	0.61	184.3	1349	0.74	269.8
260	224	0.48	112.3	394	0.55	151.1	684	0.64	201.9	1412	0.78	295.7
280	234	0.50	122.2	411	0.58	164.4	714	0.67	219.8	1473	0.81	321.8
300	244	0.52	132.3	428	0.60	177.9	742	0.70	237.8	1532	0.84	348.2
350	266	0.57	157.7	467	0.66	212.2	811	0.76	283.6	1674	0.92	415.3
400	287	0.61	183.8	504	0.71	247.2	875	0.82	330.3	1806	0.99	483.8
450	307	0.65	210.2	539	0.76	282.8	936	0.88	377.9	1932	1.06	553.5
500	326	0.69	237.1	573	0.81	319.0	994	0.93	426.3	2052	1.13	624.3
550	344	0.73	264.4	605	0.85	355.7	1050	0.98	475.4	2167	1.19	696.2
600	362	0.77	292.1	636	0.89	392.9	1103	1.03	525.1	2277	1.25	769.0
650	379	0.81	320.0	666	0.94	430.6	1155	1.08	575.4	2384	1.31	842.6

d _a		15			18		22				28		
d _i		13			16			19.6			25.6		
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	
700	395	0.84	348.3	694	0.98	468.6	1205	1.13	626.2	2487	1.37	917.1	
750	411	0.88	376.9	722	1.02	507.1	1253	1.17	677.6	2587	1.42	992.3	
800	427	0.91	405.8	749	1.05	545.9	1300	1.22	729.5	2684	1.47	1068.3	
850	442	0.94	434.9	776	1.09	585.0	1346	1.26	781.8	2779	1.53	1144.9	
900	456	0.97	464.2	802	1.13	624.5	1391	1.30	834.6	2871	1.58	1222.2	
950	471	1.00	493.8	827	1.16	664.3	1434	1.34	887.8	2961	1.63	1300.1	
1000	485	1.03	523.6	851	1.20	704.5	1477	1.38	941.4	3049	1.67	1378.6	
1100	512	1.09	583.9	899	1.26	785.5	1560	1.46	1049.7	3220	1.77	1537.3	
1200	538	1.15	644.9	945	1.33	867.6	1639	1.54	1159.4	3384	1.86	1698.0	
1300	563	1.20	706.7	989	1.39	950.8	1716	1.61	1270.5	3542	1.95	1860.7	
1400	587	1.25	769.2	1032	1.45	1034.8	1790	1.68	1382.8	3695	2.03	2025.1	
1500	611	1.30	832.3	1073	1.51	1119.7	1862	1.74	1496.3	3844	2.11	2191.3	
1600	634	1.35	896.0	1114	1.57	1205.4	1932	1.81	1610.8	3988	2.19	2359.0	
1700	656	1.40	960.3	1153	1.62	1291.9	2000	1.87	1726.4	4129	2.27	2528.3	
1800	678	1.44	1025.1	1191	1.68	1379.1	2066	1.94	1842.9	4266	2.34	2698.9	
1900	699	1.49	1090.4	1229	1.73	1467.0	2131	2.00	1960.4	4400	2.42	2871.0	
2000	720	1.53	1156.3	1265	1.78	1555.6	2195	2.06	2078.7	4531	2.49	3044.3	
2100	740	1.58	1222.6	1301	1.83	1644.8	2257	2.11	2197.9	4659	2.56	3218.9	
2200	760	1.62	1289.3	1336	1.88	1734.6	2318	2.17	2317.9	4785	2.63	3394.6	
2300	780	1.66	1356.5	1370	1.93	1825.0	2377	2.23	2438.7	4908	2.70	3571.5	
2400	799	1.70	1424.1	1404	1.97	1915.9	2436	2.28	2560.3	5028	2.76	3749.5	
2500	818	1.74	1492.2	1437	2.02	2007.4	2493	2.34	2682.5	5147	2.83	3928.6	

Tab. 40: Druckverlusttabelle Optipress 1.4520-Rohre bei Medium Wasser 60 °C, d $_{\rm a}$ 15 ... 28 mm

d _a	35				42			54			64	
d _i		32			39			51			61	
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	679	0.24	28.0	1161	0.27	37.1	2405	0.33	54.5	3911	0.38	70.3
30	753	0.26	34.5	1289	0.31	45.7	2669	0.37	67.1	4340	0.42	86.6
35	823	0.29	41.1	1407	0.33	54.5	2915	0.40	80.0	4740	0.46	103.3
40	888	0.31	47.9	1519	0.36	63.5	3146	0.44	93.2	5115	0.49	120.4
45	950	0.33	54.8	1625	0.38	72.7	3365	0.47	106.6	5471	0.53	137.7
50	1009	0.35	61.8	1726	0.41	82.0	3574	0.49	120.3	5811	0.56	155.3
55	1065	0.37	68.9	1822	0.43	91.4	3774	0.52	134.1	6136	0.59	173.2
60	1119	0.39	76.1	1915	0.45	101.0	3967	0.55	148.1	6449	0.62	191.3
65	1172	0.41	83.4	2005	0.47	110.7	4152	0.57	162.3	6751	0.65	209.6
70	1223	0.43	90.8	2092	0.50	120.4	4332	0.60	176.7	7043	0.68	228.2
75	1272	0.45	98.2	2176	0.51	130.3	4506	0.62	191.2	7326	0.71	246.9
80	1319	0.46	105.8	2257	0.53	140.3	4676	0.65	205.8	7601	0.74	265.8
85	1366	0.48	113.3	2337	0.55	150.4	4840	0.67	220.6	7869	0.76	284.9
90	1411	0.50	121.0	2415	0.57	160.5	5001	0.69	235.5	8131	0.79	304.1
95	1456	0.51	128.7	2490	0.59	170.7	5158	0.71	250.5	8386	0.81	323.5
100	1499	0.53	136.5	2564	0.61	181.0	5311	0.74	265.6	8635	0.84	343.0
110	1583	0.56	152.2	2708	0.64	201.9	5609	0.78	296.2	9118	0.88	382.5
120	1664	0.58	168.1	2846	0.67	223.0	5895	0.82	327.1	9583	0.93	422.5
130	1741	0.61	184.2	2979	0.71	244.3	6170	0.85	358.5	10032	0.97	462.9
140	1817	0.64	200.5	3108	0.74	265.9	6437	0.89	390.1	10466	1.01	503.8
150	1890	0.66	216.9	3233	0.77	287.8	6696	0.93	422.1	10887	1.05	545.2
160	1961	0.69	233.5	3354	0.79	309.8	6948	0.96	454.5	11296	1.09	586.9
170	2030	0.71	250.3	3473	0.82	332.0	7193	1.00	487.1	11694	1.13	629.0
180	2097	0.74	267.2	3588	0.85	354.4	7432	1.03	519.9	12082	1.17	671.5
190	2163	0.76	284.2	3701	0.88	377.0	7665	1.06	553.1	12461	1.21	714.3
200	2227	0.78	301.3	3811	0.90	399.8	7893	1.09	586.5	12832	1.24	757.4
220	2352	0.83	336.0	4024	0.95	445.8	8334	1.15	654.0	13550	1.31	844.6
240	2472	0.87	371.2	4229	1.00	492.4	8759	1.21	722.3	14241	1.38	932.9
260 280	2588	0.91	406.7	4427	1.05	539.5	9169	1.27	791.5	14907	1.44	1022.2
300	2700 2808	0.95 0.99	442.7	4618 4804	1.09 1.14	587.2 635.4	9566 9951	1.32 1.38	861.5 932.2	15552 16177	1.50 1.57	1112.6 1203.9
350	3067	1.08	479.0 571.3	5247	1.14	757.8	10867	1.50	1111.7	17667	1.71	1435.8
400	3310	1.16	665.4	5663	1.34	882.8	11728	1.62	1295.0	19068	1.84	1672.5
450	3540	1.24	761.3	6057	1.43	1009.9	12545	1.74	1481.6	20395	1.97	1913.5
500	3760	1.32	858.7	6433	1.52	1139.2	13324	1.84	1671.2	21661	2.10	2158.3
550	3971	1.40	957.6	6793	1.61	1270.3	14069	1.95	1863.5	22874	2.21	2406.7
600	4173	1.47	1057.7	7139	1.69	1403.1	14787	2.05	2058.4	24040	2.33	2658.3
650	4368	1.54	1159.0	7473	1.77	1537.5	15479	2.14	2255.5	25165	2.43	2913.0
700	4557	1.60	1261.4	7796	1.85	1673.4	16148	2.23	2454.9	26253	2.54	3170.4
,00	1337	1.00	1201.4	7750		10/3.7	10170	2.23	2 13-1.3	20233	2.54	3170.4

d _a		35 32			42			54			64	
d _i		32			39			51			61	
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
750	4740	1.67	1364.9	8110	1.92	1810.7	16797	2.32	2656.3	27309	2.64	3430.5
800	4919	1.73	1469.4	8415	1.99	1949.3	17428	2.41	2859.6	28335	2.74	3693.1
850	5092	1.79	1574.8	8711	2.06	2089.1	18043	2.50	3064.8	29334	2.84	3958.1
900	5261	1.85	1681.1	9000	2.13	2230.1	18642	2.58	3271.7	30308	2.93	4225.3
950	5426	1.91	1788.3	9283	2.20	2372.3	19227	2.66	3480.2	31259	3.02	4494.6
1000	5587	1.96	1896.2	9559	2.26	2515.5	19799	2.74	3690.3	32188	3.11	4766.0
1100	5900	2.07	2114.5	10094	2.39	2805.0	20907	2.89	4115.0	33990	3.29	5314.4
1200	6201	2.18	2335.5	10608	2.51	3098.3	21973	3.04	4545.2	35723	3.46	5870.1
1300	6491	2.28	2559.3	11105	2.63	3395.1	23001	3.18	4980.6	37395	3.62	6432.4
1400	6772	2.38	2785.5	11585	2.74	3695.1	23996	3.32	5420.9	39012	3.77	7000.9
1500	7044	2.48	3014.0	12051	2.85	3998.3	24961	3.45	5865.6	40581	3.93	7575.3
1600	7309	2.57	3244.7	12504	2.96	4304.4	25899	3.58	6314.6	42105	4.07	8155.1
1700	7567	2.66	3477.5	12945	3.06	4613.2	26812	3.71	6767.6	43590	4.22	8740.2
1800	7818	2.75	3712.2	13374	3.17	4924.6	27702	3.83	7224.4	45037	4.36	9330.2
1900	8063	2.83	3948.8	13794	3.26	5238.5	28571	3.95	7684.9	46450	4.49	9924.9
2000	8303	2.92	4187.2	14204	3.36	5554.7	29421	4.07	8148.9	47832	4.63	10524.1
2100	8538	3.00	4427.3	14606	3.46	5873.3	30253	4.19	8616.2	49184	4.76	11127.6
2200	8768	3.08	4669.1	15000	3.55	6194.0	31068	4.30	9086.7	50509	4.89	11735.2
2300	8993	3.16	4912.4	15385	3.64	6516.8	31867	4.41	9560.2	51808	5.01	12346.8
2400	9215	3.24	5157.3	15764	3.73	6841.6	32651	4.52	10036.7	53084	5.14	12962.2
2500	9432	3.32	5403.6	16136	3.82	7168.3	33422	4.63	10516.1	54337	5.26	13581.2

Tab. 41: Druckverlusttabelle Optipress 1.4520-Rohre bei Medium Wasser 60 °C, da 35 \dots 64 mm

\mathbf{d}_{a}		76.1			88.9			108	
\mathbf{d}_{i}		73.1			85.9			105	
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}
[Pa/m]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]
25	6391	0.43	91.1	9903	0.48	114.7	17078	0.56	152.8
30	7092	0.43	112.2	10990	0.54	141.3	18953	0.62	188.2
35	7745	0.52	133.8	12002	0.59	168.5	20698	0.68	224.5
40	8360	0.56	155.9	12954	0.63	196.3	22339	0.73	261.5
45	8942	0.60	178.3	13855	0.68	224.6	23894	0.78	299.2
50	9496	0.64	201.2	14715	0.72	253.3	25377	0.83	337.4
55	10028	0.68	224.3	15539	0.76	282.4	26798	0.87	376.3
60	10539	0.71	247.8	16331	0.80	312.0	28164	0.92	415.6
65	11032	0.74	271.5	17095	0.83	341.9	29482	0.96	455.4
70	11510	0.78	295.5	17835	0.87	372.1	30757	1.00	495.7
75	11973	0.81	319.7	18552	0.91	402.6	31994	1.04	536.3
80	12422	0.84	344.2	19249	0.94	433.4	33196	1.08	577.4
85	12860	0.87	368.9	19927	0.97	464.5	34366	1.12	618.8
90	13287	0.90	393.8	20589	1.00	495.9	35507	1.16	660.6
95	13704	0.92	418.9	21235	1.04	527.5	36621	1.20	702.7
100	14112	0.95	444.2	21867	1.07	559.3	37710	1.23	745.1
110	14902	1.00	495.3	23091	1.13	623.7	39821	1.30	830.9
120	15661	1.06	547.1	24268	1.18	688.9	41851	1.37	917.8
130	16394	1.10	599.5	25404	1.24	754.9	43810	1.43	1005.7
140	17103	1.15	652.5	26502	1.29	821.6	45705	1.49	1094.6
150	17791	1.20	706.0	27568	1.34	889.0	47543	1.55	1184.4
160	18459	1.24	760.0	28604	1.40	957.1	49329	1.61	1275.0
170	19110	1.29	814.6	29612	1.44	1025.7	51068	1.67	1366.5
180	19745	1.33	869.6	30595	1.49	1095.0	52763	1.72	1458.7
190	20364	1.37	925.0	31555	1.54	1164.8	54419	1.78	1551.7
200	20970	1.41	980.8	32494	1.59	1235.1	56037	1.83	1645.4
220	22144	1.49	1093.7	34313	1.67	1377.2	59174	1.93	1834.7
240	23272	1.57	1208.1	36062	1.76	1521.2	62190	2.03	2026.6
260	24362	1.64	1323.8	37750	1.84	1667.0	65101	2.13	2220.7
280	25415	1.71	1440.8	39383	1.92	1814.3	67917	2.22	2417.0
300	26437	1.78	1559.0	40966	2.00	1963.1	70648	2.31	2615.3
350	28872	1.94	1859.3	44738	2.18	2341.3	77154	2.52	3119.1
400	31161	2.10	2165.9	48286	2.36	2727.3	83271	2.72	3633.3
450	33331	2.25	2477.9	51647	2.52	3120.3	89069	2.91	4156.8
500	35399	2.38	2795.0	54852	2.68	3519.6	94596	3.09	4688.8
550	37380	2.52	3116.7	57923	2.83	3924.6	99891	3.26	5228.3
600	39286	2.65	3442.5	60876	2.97	4335.0	104983	3.43	5775.0
650	41125	2.77	3772.3	63725	3.11	4750.2	109896	3.59	6328.2
700	42903	2.89	4105.7	66481	3.24	5170.1	114650	3.74	6887.5

d _a		76.1			88.9			108		
d _i		73.1			85.9			105		
R	ṁ	V	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	
750	44629	3.01	4442.5	69154	3.37	5594.2	119260	3.89	7452.6	
800	46305	3.12	4782.6	71752	3.50	6022.4	123740	4.04	8023.0	
850	47938	3.23	5125.7	74282	3.62	6454.5	128102	4.18	8598.6	
900	49529	3.34	5471.7	76748	3.74	6890.2	132355	4.32	9179.1	
950	51083	3.44	5820.5	79156	3.86	7329.4	136508	4.46	9764.1	
1000	52603	3.54	6171.9	81510	3.98	7771.9	140569	4.59	10353.6	
1100	55547	3.74	6882.1	86073	4.20	8666.3	148437	4.85	11545.1	
1200	58379	3.93	7601.7	90461	4.41	9572.4	156004	5.09	12752.2	
1300	61111	4.12	8329.9	94694	4.62	10489.3	163305	5.33	13973.8	
1400	63754	4.29	9066.1	98790	4.82	11416.4	170369	5.56	15208.8	
1500	66318	4.47	9809.9	102763	5.01	12353.0	177220	5.79	16456.6	
1600	68809	4.64	10560.8	106624	5.20	13298.6	183877	6.00	17716.3	
1700	71235	4.80	11318.5	110382	5.39	14252.7	190359	6.22	18987.3	
1800	73600	4.96	12082.5	114047	5.56	15214.8	196679	6.42	20269.0	
1900	75909	5.11	12852.7	117625	5.74	16184.6	202851	6.62	21560.9	
2000	78167	5.27	13628.6	121124	5.91	17161.7	208884	6.82	22862.6	
2100	80377	5.41	14410.2	124549	6.08	18145.8	214790	7.01	24173.7	
2200	82543	5.56	15197.0	127904	6.24	19136.7	220576	7.20	25493.7	
2300	84666	5.70	15989.0	131194	6.40	20134.0	226251	7.39	26822.3	
2400	86750	5.84	16785.9	134424	6.56	21137.5	231821	7.57	28159.1	
2500	88798	5.98	17587.6	137597	6.71	22147.0	237292	7.75	29504.0	

Tab. 42: Druckverlusttabelle Optipress 1.4520-Rohre bei Medium Wasser 60 °C, d_a 76.1 ... 108 mm

4.6 Druckverlusttabellen Optiflex-Flowpress

Ablesebeispiel: Aus der Tabelle für Wasser +7 °C zur Rohrdimension 20 und Druckabfall von R = 50 Pa/m werden abgelesen:

• **m** Wasser-Massenstrom: 101 kg/h

• v Fliessgeschwindigkeit des Wassers: 0.17 m/s

• **P**_{dyn} Dynamischer Druck 14.8 Pa

4.6.1 Medium: Wasser 7 °C

d _a		16			20			25			32	
d _i		11.6			14			19.7			25.5	
R	ṁ	v	P _{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	38	0.10	4.9	68	0.12	6.7	159	0.14	10.5	323	0.17	15.2
30	42	0.11	6.0	75	0.13	8.2	176	0.16	12.9	358	0.19	18.7
35	46	0.12	7.2	82	0.14	9.8	192	0.18	15.4	391	0.21	22.3
40	49	0.13	8.4	89	0.15	11.4	207	0.19	17.9	422	0.23	26.0
45	53	0.14	9.6	95	0.16	13.1	222	0.20	20.5	452	0.24	29.8
50	56	0.15	10.8	101	0.17	14.8	236	0.21	23.1	480	0.26	33.6
55	59	0.16	12.1	106	0.18	16.5	249	0.23	25.7	507	0.27	37.4
60	62	0.16	13.3	112	0.19	18.2	262	0.24	28.4	533	0.29	41.3
65	65	0.17	14.6	117	0.20	19.9	274	0.25	31.2	557	0.30	45.3
70	68	0.18	15.9	122	0.21	21.7	286	0.26	33.9	582	0.31	49.3
75	71	0.19	17.2	127	0.22	23.4	297	0.27	36.7	605	0.33	53.3
80	73	0.19	18.5	132	0.22	25.2	308	0.28	39.5	628	0.34	57.4
85	76	0.20	19.9	136	0.23	27.1	319	0.29	42.3	650	0.35	61.5
90	78	0.21	21.2	141	0.24	28.9	330	0.30	45.2	671	0.36	65.7
95	81	0.21	22.6	145	0.25	30.7	340	0.31	48.1	692	0.37	69.9
100	83	0.22	23.9	150	0.26	32.6	350	0.32	51.0	713	0.39	74.1
110	88	0.23	26.7	158	0.27	36.3	370	0.34	56.8	753	0.41	82.6
120	92	0.24	29.5	166	0.28	40.1	389	0.35	62.8	791	0.43	91.3
130	97	0.25	32.3	174	0.30	44.0	407	0.37	68.8	828	0.45	100.0
140	101	0.27	35.1	181	0.31	47.9	424	0.39	74.9	864	0.47	108.9
150	105	0.28	38.0	189	0.32	51.8	441	0.40	81.0	899	0.49	117.8
160	109	0.29	40.9	196	0.33	55.7	458	0.42	87.2	933	0.50	126.8
170	113	0.30	43.9	203	0.35	59.7	474	0.43	93.5	966	0.52	135.9
180	116	0.31	46.8	209	0.36	63.8	490	0.45	99.8	998	0.54	145.1
190	120	0.32	49.8	216	0.37	67.8	505	0.46	106.2	1029	0.56	154.3
200	124	0.33	52.8	222	0.38	71.9	520	0.47	112.6	1060	0.57	163.7
220	131	0.34	58.9	235	0.40	80.2	549	0.50	125.5	1119	0.60	182.5
240	137	0.36	65.1	247	0.42	88.6	577	0.53	138.6	1176	0.63	201.6
260	144	0.38	71.3	258	0.44	97.1	605	0.55	151.9	1231	0.66	220.9
280	150	0.39	77.6	269	0.46	105.7	631	0.58	165.3	1284	0.69	240.4

d _a		16			20			25			32	
d i		11.6			14			19.7			25.5	
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]									
300	156	0.41	84.0	280	0.48	114.3	656	0.60	178.9	1336	0.72	260.1
350	170	0.45	100.1	306	0.52	136.4	716	0.65	213.4	1459	0.79	310.2
400	184	0.48	116.6	330	0.56	158.9	773	0.71	248.6	1574	0.85	361.4
450	196	0.52	133.4	353	0.60	181.7	827	0.75	284.4	1684	0.91	413.4
500	209	0.55	150.5	375	0.64	205.0	878	0.80	320.8	1789	0.97	466.4
550	220	0.58	167.8	396	0.68	228.6	928	0.85	357.7	1889	1.02	520.0
600	232	0.61	185.4	416	0.71	252.5	975	0.89	395.1	1985	1.07	574.4
650	242	0.64	203.2	436	0.74	276.7	1020	0.93	432.9	2078	1.12	629.4
700	253	0.67	221.1	455	0.78	301.1	1065	0.97	471.2	2168	1.17	685.0
750	263	0.69	239.2	473	0.81	325.8	1107	1.01	509.8	2255	1.22	741.2
800	273	0.72	257.6	491	0.84	350.8	1149	1.05	548.9	2340	1.26	798.0
850	283	0.74	276.0	508	0.87	375.9	1190	1.08	588.2	2422	1.31	855.2
900	292	0.77	294.7	525	0.90	401.3	1229	1.12	627.9	2502	1.35	913.0
950	301	0.79	313.5	541	0.92	426.9	1268	1.16	668.0	2581	1.39	971.2
1000	310	0.82	332.4	558	0.95	452.7	1305	1.19	708.3	2658	1.44	1029.8
1100	327	0.86	370.6	589	1.00	504.8	1378	1.26	789.8	2807	1.52	1148.3
1200	344	0.90	409.4	619	1.06	557.5	1449	1.32	872.4	2950	1.59	1268.4
1300	360	0.95	448.6	648	1.11	610.9	1516	1.38	956.0	3088	1.67	1389.9
1400	376	0.99	488.2	676	1.15	664.9	1582	1.44	1040.4	3221	1.74	1512.7
1500	391	1.03	528.3	703	1.20	719.5	1646	1.50	1125.8	3351	1.81	1636.8
1600	406	1.07	568.7	729	1.24	774.6	1707	1.56	1212.0	3477	1.88	1762.1
1700	420	1.10	609.5	755	1.29	830.1	1768	1.61	1298.9	3599	1.94	1888.5
1800	434	1.14	650.7	780	1.33	886.2	1826	1.67	1386.6	3719	2.01	2016.0
1900	447	1.18	692.2	805	1.37	942.7	1884	1.72	1475.0	3835	2.07	2144.5
2000	461	1.21	733.9	829	1.41	999.6	1940	1.77	1564.0	3949	2.13	2274.0
2100	474	1.25	776.0	852	1.45	1056.9	1994	1.82	1653.7	4061	2.19	2404.4
2200	486	1.28	818.4	875	1.49	1114.6	2048	1.87	1744.0	4171	2.25	2535.6
2300	499	1.31	861.1	897	1.53	1172.7	2101	1.92	1834.9	4278	2.31	2667.8
2400	511	1.34	904.0	919	1.57	1231.1	2153	1.96	1926.4	4383	2.37	2800.8
2500	523	1.38	947.2	941	1.61	1289.9	2203	2.01	2018.4	4487	2.42	2934.5

Tab. 43: Druckverlusttabelle Optiflex-Flowpress-Rohre bei Medium Wasser 7 °C, d_a 16 ... 32 mm

\mathbf{d}_{a}		40			50			63	
\mathbf{d}_{i}		33			42			54	
R	ṁ	v	P _{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}
[Pa/m]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]
25	643	0.21	21.8	1238	0.25	30.8	2449	0.30	44.1
30	714	0.23	26.9	1374	0.28	38.0	2717	0.33	54.4
35	780	0.25	32.1	1500	0.30	45.3	2968	0.36	64.8
40	841	0.27	37.4	1619	0.32	52.8	3203	0.39	75.5
45	900	0.29	42.8	1732	0.35	60.4	3426	0.42	86.4
50	956	0.31	48.2	1839	0.37	68.1	3638	0.44	97.5
55	1009	0.33	53.8	1942	0.39	75.9	3842	0.47	108.7
60	1061	0.34	59.4	2041	0.41	83.9	4038	0.49	120.1
65	1110	0.36	65.1	2137	0.43	91.9	4227	0.51	131.6
70	1158	0.38	70.9	2229	0.45	100.0	4410	0.54	143.2
75	1205	0.39	76.7	2319	0.47	108.2	4587	0.56	154.9
80	1250	0.41	82.5	2406	0.48	116.5	4759	0.58	166.8
85	1294	0.42	88.5	2491	0.50	124.8	4927	0.60	178.8
90	1337	0.43	94.4	2574	0.52	133.3	5091	0.62	190.8
95	1379	0.45	100.5	2654	0.53	141.8	5251	0.64	203.0
100	1420	0.46	106.5	2733	0.55	150.3	5407	0.66	215.3
110	1500	0.49	118.8	2886	0.58	167.6	5709	0.69	240.0
120	1576	0.51	131.2	3033	0.61	185.2	6000	0.73	265.1
130	1650	0.54	143.8	3175	0.64	202.9	6281	0.76	290.5
140	1722	0.56	156.5	3313	0.66	220.8	6553	0.80	316.2
150	1791	0.58	169.3	3446	0.69	238.9	6816	0.83	342.1
160	1858	0.60	182.3	3575	0.72	257.2	7073	0.86	368.3
170	1923	0.63	195.3	3701	0.74	275.7	7322	0.89	394.8
180	1987	0.65	208.5	3824	0.77	294.3	7565	0.92	421.4
190	2050	0.67	221.8	3944	0.79	313.1	7802	0.95	448.3
200	2111	0.69	235.2	4062	0.81	332.0	8034	0.98	475.3
220	2229	0.72	262.3	4289	0.86	370.2	8484	1.03	530.0
240	2342	0.76	289.7	4508	0.90	408.9	8917	1.08	585.5
260	2452	0.80	317.5	4719	0.95	448.0	9334	1.13	641.5
280 300	2558 2661	0.83 0.86	345.5	4923	0.99 1.03	487.6	9738 10129	1.18 1.23	698.2 755.5
350	2906	0.86	373.9 445.9	5121 5592	1.12	527.6 629.3	11062	1.34	901.1
400	3136	1.02	519.4	6036	1.12	733.0	11939	1.45	1049.6
450	3355	1.02	594.2	6456	1.30	838.6	12770	1.55	1200.9
500	3563	1.16	670.3	6856	1.38	946.0	13563	1.65	1354.5
550	3762	1.22	747.4	7240	1.45	1054.8	14322	1.74	1510.4
600	3954	1.29	825.5	7609	1.53	1165.1	15052	1.83	1668.3
650	4139	1.35	904.6	7965	1.60	1276.7	15756	1.91	1828.2
700	4318	1.40	984.6	8310	1.67	1389.5	16438	1.99	1989.7
700	4318	1.40	984.6	8310	1.67	1389.5	16438	1.99	1989.7

d _a		40			50			63	
\mathbf{d}_{i}		33			42			54	
R	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
750	4492	1.46	1065.4	8644	1.73	1503.5	17099	2.08	2153.0
800	4661	1.51	1146.9	8969	1.80	1618.6	17741	2.15	2317.8
850	4825	1.57	1229.2	9285	1.86	1734.8	18367	2.23	2484.1
900	4985	1.62	1312.2	9593	1.92	1851.9	18977	2.30	2651.7
950	5142	1.67	1395.8	9894	1.98	1969.9	19572	2.38	2820.8
1000	5295	1.72	1480.1	10189	2.04	2088.8	20154	2.45	2991.1
1100	5591	1.82	1650.4	10759	2.16	2329.2	21282	2.58	3335.3
1200	5876	1.91	1823.0	11307	2.27	2572.7	22367	2.71	3684.0
1300	6151	2.00	1997.6	11837	2.37	2819.2	23414	2.84	4036.9
1400	6417	2.09	2174.1	12349	2.48	3068.4	24427	2.96	4393.7
1500	6675	2.17	2352.5	12845	2.58	3320.1	25409	3.08	4754.1
1600	6926	2.25	2532.6	13328	2.67	3574.2	26364	3.20	5118.1
1700	7170	2.33	2714.3	13798	2.77	3830.7	27293	3.31	5485.2
1800	7408	2.41	2897.5	14256	2.86	4089.3	28199	3.42	5855.5
1900	7641	2.48	3082.2	14703	2.95	4349.9	29084	3.53	6228.7
2000	7868	2.56	3268.3	15140	3.04	4612.5	29949	3.63	6604.8
2100	8090	2.63	3455.7	15568	3.12	4877.0	30796	3.74	6983.5
2200	8308	2.70	3644.4	15988	3.21	5143.3	31625	3.84	7364.9
2300	8522	2.77	3834.3	16399	3.29	5411.4	32439	3.94	7748.7
2400	8732	2.84	4025.4	16803	3.37	5681.1	33238	4.03	8134.9
2500	8938	2.90	4217.7	17199	3.45	5952.4	34022	4.13	8523.4

Tab. 44: Druckverlusttabelle Optiflex-Flowpress-Rohre bei Medium Wasser 7 °C, d_a 40 ... 63 mm

4.6.2 Medium: Wasser 40 °C

d _a		16			20			25			32	
d i		11.6			14			19.7			25.5	
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	41	0.11	6.0	74	0.13	8.1	174	0.16	12.7	355	0.19	18.5
30	46	0.12	7.4	83	0.14	10.0	193	0.18	15.7	394	0.21	22.8
35	50	0.13	8.8	90	0.16	12.0	211	0.19	18.7	430	0.23	27.2
40	54	0.14	10.2	97	0.17	13.9	228	0.21	21.8	464	0.25	31.7
45	58	0.15	11.7	104	0.18	15.9	244	0.22	24.9	497	0.27	36.2
50	62	0.16	13.2	111	0.19	18.0	259	0.24	28.1	527	0.29	40.9
55	65	0.17	14.7	117	0.20	20.0	273	0.25	31.3	557	0.30	45.6
60	68	0.18	16.2	123	0.21	22.1	287	0.26	34.6	585	0.32	50.3
65	71	0.19	17.8	129	0.22	24.2	301	0.28	37.9	613	0.33	55.2
70	75	0.20	19.4	134	0.23	26.4	314	0.29	41.3	639	0.35	60.0
75	78	0.21	21.0	139	0.24	28.6	327	0.30	44.7	665	0.36	65.0
80	80	0.21	22.6	145	0.25	30.7	339	0.31	48.1	690	0.38	69.9
85	83	0.22	24.2	150	0.26	32.9	351	0.32	51.5	714	0.39	74.9
90	86	0.23	25.8	155	0.27	35.2	362	0.33	55.0	738	0.40	80.0
95	89	0.24	27.5	160	0.27	37.4	374	0.34	58.5	761	0.41	85.1
100	91	0.24	29.1	164	0.28	39.7	385	0.35	62.1	784	0.43	90.2
110	97	0.26	32.5	174	0.30	44.2	406	0.37	69.2	828	0.45	100.6
120	101	0.27	35.9	182	0.31	48.9	427	0.39	76.4	870	0.47	111.1
130	106	0.28	39.3	191	0.33	53.5	447	0.41	83.8	910	0.50	121.8
140	111	0.29	42.8	199	0.34	58.3	466	0.43	91.2	950	0.52	132.6
150	115	0.31	46.3	207	0.36	63.1	485	0.45	98.7	988	0.54	143.4
160	120	0.32	49.8	215	0.37	67.9	503	0.46	106.2	1025	0.56	154.4
170	124	0.33	53.4	223	0.38	72.7	521	0.48	113.8	1061	0.58	165.5
180	128	0.34	57.0	230	0.40	77.7	538	0.49	121.5	1096	0.60	176.7
190	132	0.35	60.7	237	0.41	82.6	555	0.51	129.3	1131	0.62	187.9
200	136	0.36	64.3	244	0.42	87.6	572	0.53	137.1	1165	0.63	199.3
220	143	0.38	71.7	258	0.44	97.7	604	0.56	152.8	1230	0.67	222.2
240	151	0.40	79.2	271	0.47	107.9	635	0.58	168.8	1292	0.70	245.4
260	158	0.42	86.8	284	0.49	118.2	664	0.61	185.0	1353	0.74	268.9
280	165	0.44	94.5	296	0.51	128.7	693	0.64	201.3	1411	0.77	292.7
300	171	0.45	102.2	308	0.53	139.2	721	0.66	217.8	1468	0.80	316.7
350	187	0.50	121.9	336	0.58	166.0	787	0.72	259.8	1603	0.87	377.7
400	202	0.54	142.0	363	0.62	193.4	850	0.78	302.7	1730	0.94	440.0
450	216	0.57	162.5	388	0.67	221.3	909	0.84	346.3	1851	1.01	503.4
500	229	0.61	183.3	412	0.71	249.6	965	0.89	390.6	1966	1.07	567.8
550	242	0.64	204.4	435	0.75	278.3	1019	0.94	435.5	2076	1.13	633.2
600	254	0.67	225.7	458	0.79	307.4	1071	0.98	481.0	2182	1.19	699.4
650	266	0.71	247.4	479	0.82	336.9	1122	1.03	527.1	2284	1.24	766.4

d _a		16 11.6			20			25		32		
d i		11.6			14			19.7			25.5	
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
700	278	0.74	269.2	500	0.86	366.7	1170	1.08	573.7	2383	1.30	834.1
750	289	0.77	291.3	520	0.89	396.7	1217	1.12	620.8	2478	1.35	902.6
800	300	0.80	313.6	539	0.93	427.1	1263	1.16	668.3	2571	1.40	971.7
850	311	0.82	336.1	558	0.96	457.8	1307	1.20	716.3	2662	1.45	1041.4
900	321	0.85	358.8	577	0.99	488.7	1351	1.24	764.6	2750	1.50	1111.7
950	331	0.88	381.7	595	1.02	519.8	1393	1.28	813.3	2837	1.54	1182.5
1000	341	0.90	404.7	613	1.05	551.2	1435	1.32	862.4	2921	1.59	1253.9
1100	360	0.95	451.3	647	1.11	614.6	1515	1.39	961.7	3085	1.68	1398.2
1200	378	1.00	498.5	680	1.17	678.9	1592	1.46	1062.2	3242	1.76	1544.4
1300	396	1.05	546.2	712	1.22	743.9	1667	1.53	1164.0	3394	1.85	1692.3
1400	413	1.09	594.5	743	1.28	809.7	1739	1.60	1266.9	3540	1.93	1841.9
1500	430	1.14	643.3	773	1.33	876.1	1809	1.66	1370.8	3683	2.00	1993.0
1600	446	1.18	692.5	802	1.38	943.1	1877	1.72	1475.7	3821	2.08	2145.6
1700	461	1.22	742.2	830	1.43	1010.8	1943	1.79	1581.6	3956	2.15	2299.5
1800	477	1.26	792.3	857	1.47	1079.0	2007	1.84	1688.4	4087	2.22	2454.7
1900	492	1.30	842.8	884	1.52	1147.8	2070	1.90	1796.0	4215	2.29	2611.2
2000	506	1.34	893.7	911	1.57	1217.1	2132	1.96	1904.4	4341	2.36	2768.8
2100	521	1.38	944.9	936	1.61	1286.9	2192	2.01	2013.6	4464	2.43	2927.6
2200	535	1.42	996.5	962	1.65	1357.2	2251	2.07	2123.6	4584	2.49	3087.5
2300	548	1.45	1048.5	986	1.70	1427.9	2309	2.12	2234.3	4702	2.56	3248.4
2400	562	1.49	1100.7	1011	1.74	1499.1	2366	2.17	2345.6	4817	2.62	3410.3
2500	575	1.52	1153.3	1034	1.78	1570.7	2422	2.23	2457.6	4931	2.68	3573.2

Tab. 45: Druckverlusttabelle Optiflex-Flowpress-Rohre bei Medium Wasser 40 °C, d $_a$ 16 ... 32 mm

\mathbf{d}_{a}		40			50			63	
\mathbf{d}_{i}		33			42			54	
R	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}	ṁ	v	P _{dyn}
[Pa/m]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]	 [kg/h]	[m/s]	[Pa]
25	707	0.23	26.6	1360	0.28	37.5	2691	0.33	53.8
30	785	0.26	32.8	1510	0.31	46.2	2987	0.37	66.2
35	857	0.28	39.1	1649	0.33	55.1	3262	0.40	79.0
40	925	0.30	45.5	1780	0.36	64.2	3520	0.43	92.0
45	989	0.32	52.1	1904	0.38	73.5	3765	0.46	105.2
50	1051	0.34	58.7	2022	0.41	82.9	3999	0.49	118.7
55	1109	0.36	65.5	2135	0.43	92.4	4223	0.52	132.4
60	1166	0.38	72.3	2244	0.45	102.1	4438	0.54	146.2
65	1220	0.40	79.3	2349	0.47	111.9	4646	0.57	160.2
70	1273	0.42	86.3	2450	0.50	121.8	4847	0.59	174.4
75	1324	0.43	93.4	2549	0.52	131.8	5042	0.62	188.7
80	1374	0.45	100.5	2645	0.53	141.8	5231	0.64	203.1
85	1423	0.47	107.7	2738	0.55	152.0	5416	0.66	217.7
90	1470	0.48	115.0	2829	0.57	162.3	5595	0.68	232.4
95	1516	0.50	122.3	2917	0.59	172.6	5771	0.71	247.2
100	1561	0.51	129.7	3004	0.61	183.0	5943	0.73	262.1
110	1649	0.54	144.6	3172	0.64	204.1	6275	0.77	292.3
120	1733	0.57	159.7	3334	0.67	225.5	6595	0.81	322.8
130	1814	0.59	175.1	3490	0.71	247.0	6904	0.84	353.8
140	1892	0.62	190.5	3641	0.74	268.9	7202	0.88	385.0
150	1968	0.64	206.2	3787	0.77	290.9	7492	0.92	416.6
160	2042	0.67	221.9	3930	0.79	313.2	7773	0.95	448.5
170	2114	0.69	237.9	4068	0.82	335.7	8047	0.98	480.7
180	2184	0.72	253.9	4203	0.85	358.3	8315	1.02	513.1
190	2253	0.74	270.1	4335	0.88	381.2	8576	1.05	545.8
200	2320	0.76	286.4	4464	0.90	404.2	8831	1.08	578.8
220	2450	0.80	319.4	4714	0.95	450.7	9325	1.14	645.4
240	2575	0.84	352.8	4954	1.00	497.8	9800	1.20	712.9
260	2695	0.88	386.5	5186	1.05	545.5	10259	1.25	781.2
280	2812	0.92	420.7	5411	1.09	593.7	10703	1.31	850.2
300	2925	0.96	455.2	5628	1.14	642.5	11133	1.36	920.0
350	3194	1.05	542.9	6146	1.24	766.2	12158	1.49	1097.2
400	3447	1.13	632.4	6634	1.34	892.5	13122	1.61	1278.1
450	3687	1.21	723.6	7096 7536	1.43	1021.2	14036	1.72	1462.2
500 550	3916 4135	1.28	816.1 910.1	7536	1.52 1.61	1151.8	14907	1.82	1649.3
600	4135 4346	1.35 1.42	1005.2	7958 8363	1.69	1284.4 1418.7	15741 16544	1.93 2.02	1839.1 2031.4
650	4546	1.42	1101.5	8755	1.77	1554.6	17318	2.02	2226.0
700	4746					1692.0			2422.8
700	4740	1.55	1198.9	9133	1.85	1092.0	18067	2.21	2422.8

d _a		40			50			63	
d _i		33			42			54	
R	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
750	4937	1.62	1297.2	9501	1.92	1830.8	18794	2.30	2621.5
800	5123	1.68	1396.5	9858	1.99	1970.9	19500	2.39	2822.2
850	5303	1.74	1496.7	10205	2.06	2112.3	20187	2.47	3024.7
900	5479	1.79	1597.7	10544	2.13	2254.9	20857	2.55	3228.8
950	5651	1.85	1699.6	10875	2.20	2398.6	21512	2.63	3434.7
1000	5819	1.91	1802.2	11198	2.26	2543.4	22151	2.71	3642.0
1100	6145	2.01	2009.6	11825	2.39	2836.1	23391	2.86	4061.1
1200	6458	2.12	2219.7	12428	2.51	3132.7	24584	3.01	4485.7
1300	6761	2.21	2432.3	13010	2.63	3432.7	25734	3.15	4915.4
1400	7053	2.31	2647.3	13572	2.74	3736.2	26847	3.28	5349.9
1500	7337	2.40	2864.5	14118	2.85	4042.7	27927	3.42	5788.8
1600	7612	2.49	3083.7	14648	2.96	4352.1	28976	3.54	6231.9
1700	7881	2.58	3305.0	15165	3.07	4664.4	29998	3.67	6679.0
1800	8142	2.67	3528.1	15668	3.17	4979.2	30994	3.79	7129.9
1900	8398	2.75	3753.0	16160	3.27	5296.6	31966	3.91	7584.3
2000	8647	2.83	3979.5	16641	3.37	5616.4	32917	4.03	8042.2
2100	8892	2.91	4207.7	17111	3.46	5938.4	33848	4.14	8503.4
2200	9131	2.99	4437.5	17572	3.55	6262.7	34759	4.25	8967.7
2300	9366	3.07	4668.8	18024	3.64	6589.1	35654	4.36	9435.1
2400	9597	3.14	4901.5	18468	3.73	6917.5	36531	4.47	9905.3
2500	9823	3.22	5135.6	18904	3.82	7247.9	37393	4.57	10378.4

Tab. 46: Druckverlusttabelle Optiflex-Flowpress-Rohre bei Medium Wasser 40 °C, d $_a$ 40 ... 63 mm

4.6.3 Medium: Wasser 60 °C

d _a		16			20			25			32	
d _i		11.6			14			19.7			25.5	
R	ṁ	v	P _{dyn}	ṁ	v	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
25	43	0.12	6.6	78	0.13	8.9	182	0.17	14.0	370	0.20	20.3
30	48	0.13	8.1	86	0.15	11.0	202	0.19	17.2	411	0.23	25.1
35	52	0.14	9.6	94	0.16	13.1	220	0.20	20.6	449	0.25	29.9
40	57	0.15	11.2	102	0.18	15.3	238	0.22	23.9	485	0.27	34.8
45	60	0.16	12.9	109	0.19	17.5	255	0.24	27.4	518	0.28	39.8
50	64	0.17	14.5	115	0.20	19.8	270	0.25	30.9	550	0.30	44.9
55	68	0.18	16.2	122	0.21	22.0	285	0.26	34.5	581	0.32	50.1
60	71	0.19	17.9	128	0.22	24.3	300	0.28	38.1	611	0.34	55.3
65	75	0.20	19.6	134	0.23	26.7	314	0.29	41.7	639	0.35	60.6
70	78	0.21	21.3	140	0.24	29.0	328	0.30	45.4	667	0.37	66.0
75	81	0.22	23.1	146	0.25	31.4	341	0.32	49.1	694	0.38	71.4
80	84	0.22	24.8	151	0.26	33.8	354	0.33	52.9	720	0.40	76.9
85	87	0.23	26.6	156	0.27	36.2	366	0.34	56.7	745	0.41	82.4
90	90	0.24	28.4	162	0.28	38.7	378	0.35	60.5	770	0.42	88.0
95	93	0.25	30.2	167	0.29	41.1	390	0.36	64.4	794	0.44	93.6
100	95	0.26	32.0	172	0.30	43.6	402	0.37	68.2	818	0.45	99.2
110	101	0.27	35.7	181	0.31	48.6	424	0.39	76.1	864	0.47	110.6
120	106	0.28	39.4	190	0.33	53.7	446	0.41	84.1	908	0.50	122.2
130	111	0.30	43.2	199	0.35	58.9	467	0.43	92.1	950	0.52	133.9
140	116	0.31	47.0	208	0.36	64.1	487	0.45	100.2	991	0.54	145.7
150	120	0.32	50.9	216	0.38	69.3	506	0.47	108.5	1031	0.57	157.7
160	125	0.33	54.8	224	0.39	74.6	525	0.49	116.8	1070	0.59	169.8
170	129	0.35	58.7	232	0.40	80.0	544	0.50	125.1	1108	0.61	182.0
180	134	0.36	62.7	240	0.42	85.4	562	0.52	133.6	1144	0.63	194.2
190	138	0.37	66.7	248	0.43	90.8	580	0.54	142.1	1180	0.65	206.6
200	142	0.38	70.7	255	0.44	96.3	597	0.55	150.7	1216	0.67	219.1
220	150	0.40	78.9	269	0.47	107.4	630	0.58	168.0	1284	0.71	244.3
240	157	0.42	87.1	283	0.49	118.6	663	0.61	185.6	1349	0.74	269.8
260	165	0.44	95.4	296	0.51	130.0	694	0.64	203.4	1412	0.78	295.7
280	172	0.46	103.9	309	0.54	141.5	724	0.67	221.4	1473	0.81	321.8
300	179	0.48	112.4	321	0.56	153.1	753	0.70	239.5	1532	0.84	348.2
350 400	195 211	0.52 0.56	134.1	351	0.61	182.6	822	0.76	285.7	1674	0.92	415.3
450	225	0.60	156.2 178.7	379 405	0.66 0.70	212.7 243.3	887 949	0.82 0.88	332.8 380.7	1806 1932	1.06	483.8 553.5
500	239	0.64	201.5	430	0.70	274.4	1008	0.88	429.4	2052	1.13	624.3
550	253	0.68	224.7	455	0.79	306.0	1064	0.99	478.8	2167	1.13	696.2
600	266	0.08	248.2	478	0.79	338.0	1118	1.04	528.9	2277	1.19	769.0
650	278	0.71	272.0	500	0.87	370.4	1171	1.04	579.6	2384	1.25	842.6
050	2/8	0.74	2/2.0	500	0.87	5/0.4	1171	1.09	5/9.0	2584	1.51	042.0

d _a		16			20			25				
d i		11.6			14			19.7			25.5	
R	ṁ	V	P _{dyn}	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]
700	290	0.78	296.0	522	0.91	403.1	1221	1.13	630.8	2487	1.37	917.1
750	302	0.81	320.3	543	0.94	436.2	1270	1.18	682.5	2587	1.42	992.3
800	313	0.84	344.8	563	0.98	469.6	1318	1.22	734.8	2684	1.47	1068.3
850	324	0.87	369.5	583	1.01	503.3	1365	1.27	787.5	2779	1.53	1144.9
900	335	0.90	394.5	602	1.05	537.3	1410	1.31	840.7	2871	1.58	1222.2
950	345	0.92	419.6	621	1.08	571.5	1454	1.35	894.2	2961	1.63	1300.1
1000	356	0.95	445.0	640	1.11	606.0	1497	1.39	948.2	3049	1.67	1378.6
1100	376	1.00	496.2	675	1.17	675.8	1581	1.47	1057.4	3220	1.77	1537.3
1200	395	1.06	548.1	710	1.23	746.4	1662	1.54	1167.9	3384	1.86	1698.0
1300	413	1.11	600.6	743	1.29	817.9	1740	1.61	1279.8	3542	1.95	1860.7
1400	431	1.15	653.6	775	1.35	890.2	1815	1.68	1392.9	3695	2.03	2025.1
1500	448	1.20	707.3	806	1.40	963.2	1888	1.75	1507.2	3844	2.11	2191.3
1600	465	1.24	761.4	837	1.45	1037.0	1959	1.82	1622.5	3988	2.19	2359.0
1700	482	1.29	816.0	866	1.50	1111.4	2028	1.88	1738.9	4129	2.27	2528.3
1800	498	1.33	871.1	895	1.55	1186.4	2095	1.94	1856.3	4266	2.34	2698.9
1900	513	1.37	926.6	923	1.60	1262.0	2161	2.00	1974.7	4400	2.42	2871.0
2000	529	1.41	982.6	950	1.65	1338.2	2225	2.06	2093.9	4531	2.49	3044.3
2100	543	1.45	1038.9	977	1.70	1414.9	2288	2.12	2213.9	4659	2.56	3218.9
2200	558	1.49	1095.7	1004	1.74	1492.2	2350	2.18	2334.8	4785	2.63	3394.6
2300	572	1.53	1152.8	1030	1.79	1569.9	2410	2.24	2456.5	4908	2.70	3571.5
2400	587	1.57	1210.2	1055	1.83	1648.2	2470	2.29	2579.0	5028	2.76	3749.5
2500	600	1.61	1268.0	1080	1.87	1726.9	2528	2.34	2702.1	5147	2.83	3928.6

Tab. 47: Druckverlusttabelle Optiflex-Flowpress-Rohre bei Medium Wasser 60 °C, da 16 ... 32 mm

\mathbf{d}_{a}		40			50		63				
\mathbf{d}_{i}		33			42		54				
R	ṁ	v	\mathbf{P}_{dyn}	ṁ	v	P _{dyn}	ṁ	V	P _{dyn}		
[Pa/m]		[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]		[m/s]	[Pa]		
25	[kg/h] 738	0.24	29.2	1420	0.29	41.3	[kg/h] 2809	0.35	59.1		
30	819	0.27	36.0	1576	0.23	50.8	3117	0.38	72.8		
35	894	0.30	43.0	1721	0.35	60.6	3405	0.42	86.8		
40	965	0.32	50.0	1858	0.38	70.6	3674	0.45	101.1		
45	1033	0.34	57.3	1987	0.41	80.8	3930	0.49	115.7		
50	1097	0.36	64.6	2110	0.43	91.1	4174	0.52	130.5		
55	1158	0.38	72.0	2228	0.45	101.6	4408	0.54	145.5		
60	1217	0.40	79.5	2342	0.48	112.3	4633	0.57	160.7		
65	1274	0.42	87.2	2451	0.50	123.0	4849	0.60	176.1		
70	1329	0.44	94.9	2558	0.52	133.9	5059	0.62	191.7		
75	1382	0.46	102.6	2660	0.54	144.9	5263	0.65	207.4		
80	1434	0.47	110.5	2760	0.56	156.0	5460	0.67	223.3		
85	1485	0.49	118.4	2858	0.58	167.1	5653	0.70	239.3		
90	1534	0.51	126.4	2953	0.60	178.4	5840	0.72	255.5		
95	1582	0.52	134.5	3045	0.62	189.8	6024	0.74	271.8		
100	1630	0.54	142.6	3136	0.64	201.3	6203	0.77	288.2		
110	1721	0.57	159.0	3311	0.68	224.4	6550	0.81	321.3		
120	1808	0.60	175.6	3480	0.71	247.9	6884	0.85	354.9		
130	1893	0.63	192.5	3643	0.74	271.6	7206	0.89	388.9		
140	1975	0.65	209.5	3800	0.78	295.6	7518	0.93	423.3		
150	2054	0.68	226.7	3953	0.81	319.9	7820	0.97	458.1		
160	2132	0.70	244.0	4102	0.84	344.4	8114	1.00	493.1		
170	2207	0.73	261.5	4246	0.87	369.1	8400	1.04	528.5		
180	2280	0.75	279.2	4387	0.90	394.0	8679	1.07	564.2		
190	2351	0.78	297.0	4525	0.92	419.1	8951	1.10	600.1		
200	2421	0.80	314.9	4660	0.95	444.4	9217	1.14	636.4		
220	2557	0.85	351.1	4920	1.00	495.6	9733	1.20	709.6		
240	2687	0.89	387.8	5171	1.06	547.4	10229	1.26	783.8		
260	2813	0.93	425.0	5413	1.10	599.8	10708	1.32	858.9		
280	2935	0.97	462.6	5647	1.15	652.8	11171	1.38	934.8		
300	3053	1.01	500.5	5875	1.20	706.4	11621	1.43	1011.5		
350	3334	1.10	596.9	6416	1.31	842.4	12691	1.57	1206.3		
400	3598	1.19	695.3	6924	1.41	981.3	13697	1.69	1405.2		
450	3849	1.27	795.5	7406	1.51	1122.7	14650	1.81	1607.7		
500	4088	1.35	897.3	7866	1.61	1266.4	15560	1.92	1813.4		
550	4316	1.43	1000.6	8306	1.70	1412.1	16430	2.03	2022.1		
600	4536	1.50	1105.2	8730	1.78	1559.8	17268	2.13	2233.5		
650	4749	1.57	1211.1	9138	1.86	1709.2	18076	2.23	2447.4		
700	4954	1.64	1318.1	9533	1.95	1860.3	18858	2.33	2663.8		

d _a		40			50		63				
d _i		33			42		54				
R	ṁ	V	\mathbf{P}_{dyn}	ṁ	V	P _{dyn}	ṁ	v	P _{dyn}		
[Pa/m]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]	[kg/h]	[m/s]	[Pa]		
750	5153	1.70	1426.3	9917	2.02	2012.9	19616	2.42	2882.3		
800	5347	1.77	1535.4	10289	2.10	2167.0	20353	2.51	3102.9		
850	5535	1.83	1645.6	10652	2.17	2322.4	21071	2.60	3325.5		
900	5719	1.89	1756.7	11006	2.25	2479.2	21770	2.69	3550.0		
950	5899	1.95	1868.6	11351	2.32	2637.2	22454	2.77	3776.3		
1000	6074	2.01	1981.5	11689	2.39	2796.4	23121	2.85	4004.3		
1100	6414	2.12	2209.5	12343	2.52	3118.3	24416	3.01	4465.1		
1200	6741	2.23	2440.5	12972	2.65	3444.3	25660	3.17	4932.0		
1300	7057	2.33	2674.3	13579	2.77	3774.2	26861	3.32	5404.4		
1400	7362	2.43	2910.6	14167	2.89	4107.8	28023	3.46	5882.1		
1500	7658	2.53	3149.4	14736	3.01	4444.8	29150	3.60	6364.6		
1600	7946	2.63	3390.5	15290	3.12	4785.0	30245	3.73	6851.8		
1700	8226	2.72	3633.7	15829	3.23	5128.3	31311	3.87	7343.4		
1800	8499	2.81	3879.0	16354	3.34	5474.5	32351	3.99	7839.1		
1900	8765	2.90	4126.3	16868	3.44	5823.5	33366	4.12	8338.8		
2000	9026	2.98	4375.4	17369	3.54	6175.1	34358	4.24	8842.2		
2100	9281	3.07	4626.3	17860	3.64	6529.2	35330	4.36	9349.3		
2200	9531	3.15	4878.9	18342	3.74	6885.7	36281	4.48	9859.8		
2300	9777	3.23	5133.2	18813	3.84	7244.5	37215	4.59	10373.6		
2400	10017	3.31	5389.0	19277	3.93	7605.6	38131	4.71	10890.7		
2500	10254	3.39	5646.4	19731	4.03	7968.8	39031	4.82	11410.8		

Tab. 48: Druckverlusttabelle Optiflex-Flowpress-Rohre bei Medium Wasser 60 °C, d $_a$ 40 ... 63 mm

4.7 Zeta-Werte und äquivalente Rohrlängen von Optipress-Therm-Pressfittings und Armaturen

Optipress-Therm-Pressfittings und Armaturen werden mit Optipress-Therm-Rohren aus Stahl verarbeitet. Bezugstemperatur $t=60\,^{\circ}\text{C}$

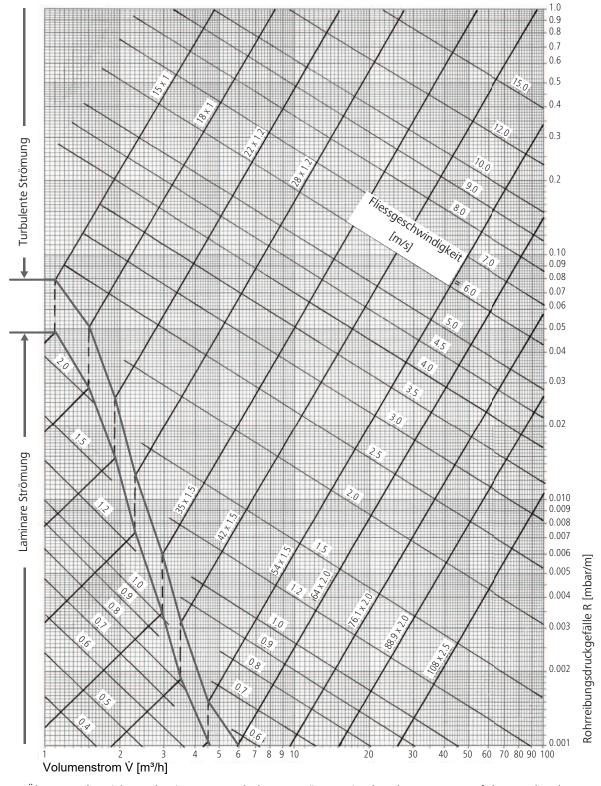
Fittingart/Armaturenart			Zeta-Wert ζ											
Werksto	off: Sta	hl 1.0308 verzinkt	Äquivalente Rohrlängen [m]											
Symbol		Aussendurchmesser d _a		18	22	28	35	42	54	64	76.1	88.9	108	
		Nenndurchmesser DN	12	15	20	25	32	40	50	60	65	80	100	
	5	Anschlusswinkel	1.3	1.2	1.1	1.1								
			0.8	0.9	1.1	1.6								
-	₹	T-Stück Egal - Abzweig	1.3	1.2	1.1	1.1	0.9	0.9	0.9	0.8	0.8	0.7	0.6	
+ I			0.8	0.9	1.1	1.5	1.5	1.5	2.6	2.9	3.7	4.1	4.8	
		T-Stück Egal - Durchfluss	0.3	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
			0.2	0.3	0.2	0.1	0.2	0.2	0.2	0.3	0.2	0.2	0.3	
		Bogen 90°	0.8	0.5	0.3	0.4	0.2	0.3	0.3	0.3	0.2	0.2	0.2	
1	T.		0.5	0.4	0.3	0.5	0.4	0.4	0.9	1.0	1.0	1.2	1.3	
>		Bogen 45°	0.5	0.3	0.7	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.1	
1	Branch			0.2	0.7	0.5	0.5	0.4	0.6	0.7	0.8	0.9	1.1	

Tab. 49: Zeta-Wert und äquivalente Rohrlängen von Optipress-Therm-Pressfittings

Die Zeta-Werte für Optipress-Stahlrohre 1.0037 bei Spitzenvolumenstrom sind folgender Tabelle zu entnehmen:

Rohrart			Zeta-Wert ζ pro m Rohr										
Werkstoff: Stahl 1.0037													
Symbol	Aussendurchmesser d _a	15	18	22	28	35	42	54	64	76.1	88.9	108	
	Nenndurchmesser DN	12	15	20	25	32	40	50	60	65	80	100	
	Rohr verzinkt/PP	1.7	1.3	1.0	0.7	0.6	0.5	0.3	0.3	0.2	0.2	0.1	

Tab. 50: Zeta-Werte Stahlrohr 1.0037

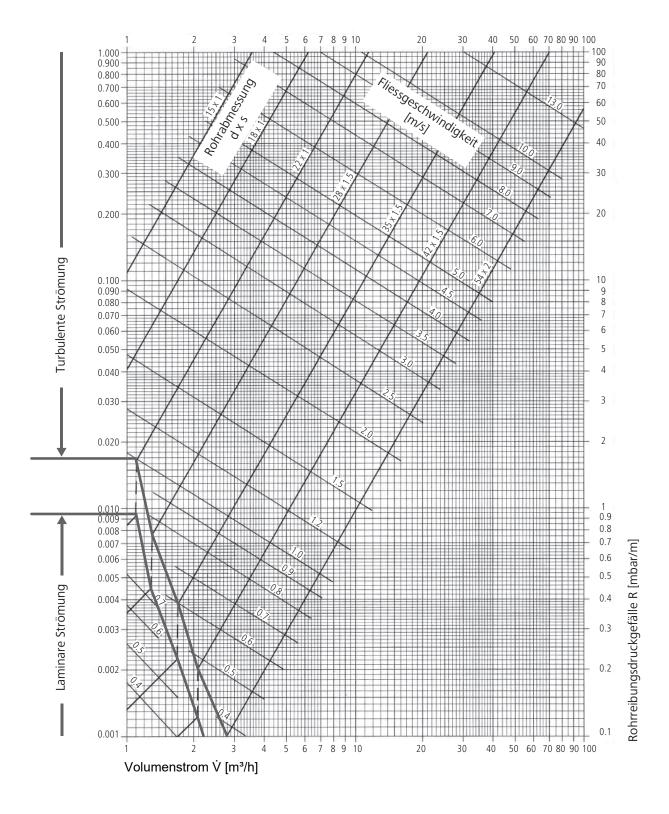


5 Dimensionierung von Rohrleitungssystemen für Gas

5.1 Druckverlustdiagramm von Edelstahlrohren für Erdgas H

Diagramm zur Bestimmung der Druckverluste durch Rohrreibung in Rohren nach SN EN 10305. Rohrrauigkeit k = 0.0015 mm

Maximale Fliessgeschwindigkeit = 6 m/s


Im Übergangsbereich von laminarer zu turbulenter Strömung ist der oberste Wert auf dem senkrechten Kurvenabschnitt abzulesen (0.08 mbar/m).

Der kleinste Volumenstrom beträgt 1 m³/h, für kleinere Volumenströme wird in der Berechnung 1 m³/h eingesetzt.

5.2 Druckverlustdiagramm von Edelstahlrohren für Flüssiggas

Diagramm zur Bestimmung der Druckverluste durch Rohrreibung in Rohren nach EN 1057 (DIN 1786). Rohrrauigkeit $k=0.0015\ mm$

6 Weiterführende Informationen

Für die Planung, Ausführung und Instandhaltung von Nussbaum Installationen müssen die technischen Dokumente von Nussbaum berücksichtigt werden.

Informationen zu verschiedenen Medien und den von Nussbaum angebotenen Lösungen sind in den Nussbaum Dokumenten «Anwendungen und Lösungen» zu finden, detaillierte Informationen zu Nussbaum Systemen in den entsprechenden Dokumenten «Systembeschrieb».

Wir verteilen Wasser

Die R. Nussbaum AG, 1903 gegründet, ist ein eigenständiges Schweizer Familienunternehmen, beschäftigt rund 500 Mitarbeitende und gehört zu den führenden Herstellern von Armaturen, Verteilsystemen und individuellen Gesamtlösungen im Bereich Sanitär- und Heiztechnik. Von unserem Hauptsitz in Olten aus vertreiben wir unser breites Produktsortiment über ein eigenes Filialnetz an Installierende in der ganzen Schweiz.

Für weitere Informationen wenden Sie sich bitte an Ihren Installateur resp. Nussbaum. Dort erhalten Sie kompetente Auskunft über sämtliche Nussbaum Produkte.

Nous distribuons de l'eau

R. Nussbaum SA, entreprise familiale suisse indépendante fondée en 1903, emploie près de 500 collaborateurs et compte parmi les fabricants leaders de robinetteries, de systèmes de distribution et de solutions globales individuelles dans le domaine de la technique sanitaire et de chauffage. Depuis notre siège d'Olten, nous proposons un large assortiment de produits au travers de notre réseau de succursales et installateurs/trices dans toute la Suisse.

Pour plus d'informations, veuillez vous adresser à votre installateur resp. Nussbaum. Vous y recevrez des informations compétentes sur l'ensemble des produits Nussbaum.

Distribuiamo acqua

La società R. Nussbaum SA, fondata nel 1903, è un'azienda svizzera indipendente di proprietà familiare che impiega ben 500 dipendenti ed è tra i principali produttori di rubinetteria, sistemi di distribuzione e soluzioni integrali personalizzate nel settore della tecnica idrosanitaria e di riscaldamento. Dalla nostra sede sociale di Olten commercializziamo, attraverso la rete di succursali Nussbaum, la nostra ampia gamma di prodotti rifornendo installatrici e installatori in tutta la Svizzera.

Per ulteriori informazioni non esitate a rivolgervi al vostro installatore risp. Nussbaum. Qui riceverete informazioni competenti su tutti i prodotti della Nussbaum.

Hersteller Armaturen und Systeme Sanitär- und Heiztechnik Fabricant de robinetterie et systèmes de technique sanitaire et chauffage Produttore di rubinetterie e sistemi di tecnica idrosanitaria e di riscaldamento ISO 9001/14001/45001

Basel, Bern, Biel, Brig, Buchs, Carouge, Crissier, Giubiasco, Givisiez, Gwatt-Thun, Kriens, Sion, Steinhausen/Zug, St. Gallen, Trimbach, Winterthur, Zürich

R. Nussbaum AG | SA Hauptsitz | Siège social | Sede sociale Martin-Disteli-Strasse 26 Postfach, CH-4601 Olten 062 286 81 11 info@nussbaum.ch

nussbaum.ch