Scheda tecnica

55300 - Detentore ad angolo **55301** - Detentore diritto

55303 - Detentore ad angolo, con manicotto da pressare Optipress

Costruzione e materiali

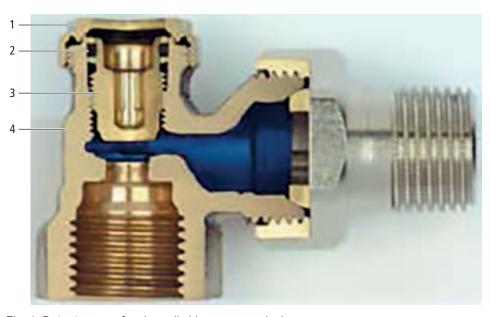


Fig. 1: Detentore con funzione di chiusura e regolazione

1	Cappuccio di chiusura	
2	O-ring	EPDM
3	Cono di chiusura e regolazione	
4	Corpo	Bronzo nichelato

Descrizione del prodotto

Il detentore viene impiegato in impianti di riscaldamento ad acqua calda con pompa e in impianti di climatizzazione. Il detentore vanta un impiego versatile grazie alle esecuzioni con filettatura interna da DN 10 a DN 20 e con filettatura esterna G3/4 / DN 15 in forma ad angolo o diritta. Consente di chiudere singoli radiatori, ad esempio per effettuare lavori di tinteggiatura o manutenzione senza interrompere il funzionamento degli altri radiatori. Una combinazione speciale di cono di chiusura/regolazione e sede della valvola consente sia l'impiego come rubinetteria d'arresto sia per il bilanciamento idraulico. L'obiettivo è, ad esempio, quello di assicurare a tutte le utenze l'erogazione di acqua di riscaldamento in funzione dello specifico fabbisogno termico.

Dati tecnici

Classe di pressione	[PN]	10
Temperatura d'esercizio max.	[°C]	120
Temperatura d'esercizio max., con raccordo da pressare	[°C]	110
Temperatura d'esercizio min.	[°C]	-10

Valori di potenza

Articolo	Ø nominale	Valore Kv							Valore Kvs	Valore ζ	
	[DN]	[m³/h] Giri di impostazione							[m ³ /h]	(aperto)	
		0.25	0.5	1	1.5	2	2.5	3	3.5		
55300	10 (3/8)	0.22	0.37	0.62	0.92	1.19	1.36	1.47	1.58	1.68	13.8
55301	15 (1/2)					1.22	1.42	1.56	1.68	1.74	34.6
55303	20 (¾)					1.27	1.55	1.72	1.85	1.93	93.2

Tabella 1: Valori di potenza

Diagramma perdita di pressione DN 10 (3/8)

Forma ad angolo e diritta

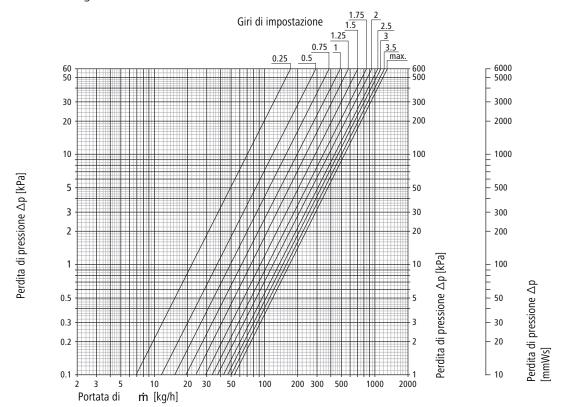


Fig. 2: Diagramma perdita di pressione DN 10 (%)

Diagramma perdita di pressione DN 15 (1/2)

Forma ad angolo e diritta

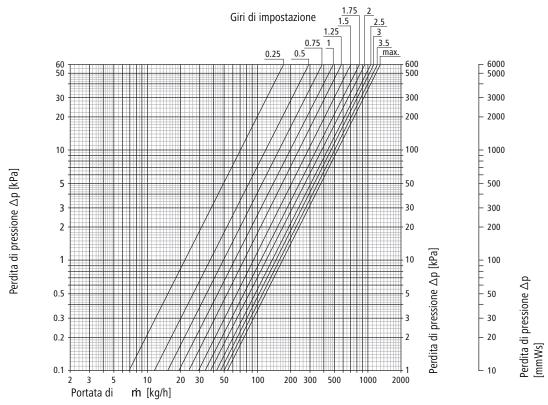


Fig. 3: Diagramma perdita di pressione DN 15 (1/2)

Diagramma perdita di pressione DN 20 (3/4)

Forma ad angolo e diritta

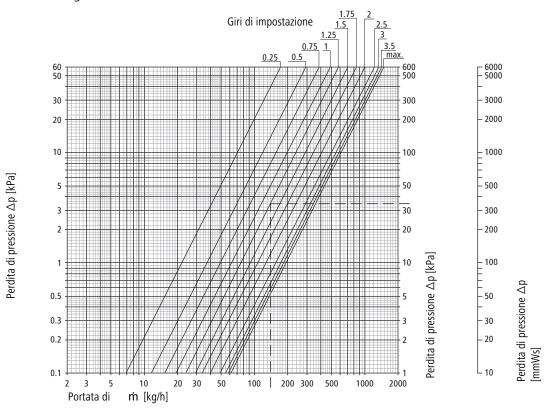


Fig. 4: Diagramma perdita di pressione DN 20 (3/4)

Scheda tecnica

Avvertenze per l'impiego

Il corpo con filettatura interna è concepito per il raccordo al tubo filettato oppure al tubo in rame e acciaio di precisione o in materiale composito (solo DN 15) per mezzo di raccordi a compressione. L'esecuzione con filettatura esterna consente anche il raccordo al tubo in materiale sintetico utilizzando i raccordi a compressione corrispondenti.

La composizione del termovettore dovrebbe essere conforme alla direttiva VDI 2035, onde prevenire danni e formazione di calcare negli impianti di riscaldamento ad acqua calda. Per impianti industriali e di teleriscaldamento occorre rispettare il foglio d'istruzioni VdTÜV 1466 / la scheda tecnica AGFW FW 510. Gli olii minerali o i lubrificanti a base di olii minerali di qualsiasi tipo contenuti nel termovettore causano forti rigonfiamenti e, nella maggior parte dei casi, l'avaria delle guarnizioni in EPDM. Per l'impiego di prodotti antigelo e anticorrosivi privi di nitriti e a base di glicole etilenico occorre consultare la documentazione del produttore di tali prodotti per ricavare le indicazioni corrispondenti, in particolare la concentrazione dei singoli additivi.

Ulteriori informazioni e la versione più recente del presente documento sono disponibili sul nostro sito web www.nussbaum.ch.

Martin-Disteli-Strasse 26

Casella postale CH-4601 Olten

55300

55301

55303